Cyclone gasification technology is commonly used for biomass fuels with small particle sizes, such as rice husks and wood chips. This paper explored the effects of gasification intensity and equivalence ratio on the performance characteristics of an autothermal cyclone gasifier. Increasing the gasification intensity caused the syngas' heating value, the cold gasification efficiency and the carbon conversion rate to increase to a maximum for an intensity of 885.24 kg/(m2 h) before then decreasing as the gasification intensity was further increased. Increasing the equivalence ratio from 0.23 to 0.32 increased the overall temperature of gasifier, decreased the tar content (from 6.84 to 4.96 g/N·m3), and increased the carbon conversion rate (from 47.2% to 62.3%). Increasing the equivalence ratio to 0.26 also increased the syngas' heating value to its maximum of 4.25 MJ/N·m3, which then decreased with further increases in equivalence ratio. A similar trend was observed for the gasification efficiency, which ranged from 30% to 37%. From these tests, a gasification intensity of 885.24 kg/(m2 h) and an equivalence ratio of 0.26 appeared optimal for the autothermal cyclone air gasification of biomass process studied here.

Reference

1.
Dean
,
J.
,
Braun
,
R.
,
Penev
,
M.
,
Kinchin
,
C.
, and
Muñoz
,
D.
,
2011
, “
Leveling Intermittent Renewable Energy Production Through Biomass Gasification-Based Hybrid Systems
,”
ASME J. Energy Resour. Technol.
,
133
(
3
), p.
031801
.
2.
Lin
,
J.-C. M.
,
2007
, “
Combination of a Biomass Fired Updraft Gasifier and a Stirling Engine for Power Production
,”
ASME J. Energy Resour. Technol.
,
129
(
1
), pp.
66
70
.
3.
Wladyslaw
,
M.
,
2017
, “
Co-Combustion of Pulverized Coal and Biomass in Fluidized Bed of Furnace
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062204
.
4.
Sansaniwal
,
S.
,
Rosen
,
M.
, and
Tyagi
,
S.
,
2017
, “
Global Challenges in the Sustainable Development of Biomass Gasification: An Overview
,”
Renewable Sustainable Energy Rev.
,
80
, pp.
23
43
.
5.
Srinivas
,
T.
,
Reddy
,
B.
, and
Gupta
,
A.
,
2012
, “
Thermal Performance Prediction of a Biomass Based Integrated Gasification Combined Cycle Plant
,”
ASME J. Energy Resour. Technol.
,
134
(
2
), p.
021002
.
6.
Molino
,
A.
,
Chianese
,
S.
, and
Musmarra
,
D.
,
2016
, “
Biomass Gasification Technology: The State of the Art Overview
,”
J. Energy Chem.
,
25
(
1
), pp.
10
25
.
7.
Parker
,
H.
,
1981
, “
Engine Fuels From Biomass
,”
ASME J. Energy Resour. Technol.
,
103
(
4
), pp.
344
351
.
8.
Güell
,
B. M.
,
Sandquist
,
J.
, and
Sørum
,
L.
,
2013
, “
Gasification of Biomass to Second Generation Biofuels: A Review
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
014001
.
9.
Ramachandran
,
S.
,
Yao
,
Z.
,
You
,
S.
,
Massier
,
T.
,
Stimming
,
U.
, and
Wang
,
C.-H.
,
2017
, “
Life Cycle Assessment of a Sewage Sludge and Woody Biomass Co-Gasification System
,”
Energy
,
137
, pp. 369–376.
10.
Devi
,
L.
,
Ptasinski
,
K. J.
, and
Janssen
,
F. J.
,
2003
, “
A Review of the Primary Measures for Tar Elimination in Biomass Gasification Processes
,”
Biomass Bioenergy
,
24
(
2
), pp.
125
140
.
11.
Sutton
,
D.
,
Kelleher
,
B.
, and
Ross
,
J. R.
,
2001
, “
Review of Literature on Catalysts for Biomass Gasification
,”
Fuel Process. Technol.
,
73
(
3
), pp.
155
173
.
12.
Sansaniwal
,
S.
,
Pal
,
K.
,
Rosen
,
M.
, and
Tyagi
,
S.
,
2017
, “
Recent Advances in the Development of Biomass Gasification Technology: A Comprehensive Review
,”
Renewable Sustainable Energy Rev.
,
72
, pp.
363
384
.
13.
Lin
,
K. S.
,
Wang
,
H. P.
,
Lin
,
C.-J.
, and
Juch
,
C.-I.
,
1998
, “
A Process Development for Gasification of Rice Husk
,”
Fuel Process. Technol.
,
55
(
3
), pp.
185
192
.
14.
Zhao
,
Y.
,
Sun
,
S.
,
Che
,
H.
,
Guo
,
Y.
, and
Gao
,
C.
,
2012
, “
Characteristics of Cyclone Gasification of Rice Husk
,”
Int. J. Hydrogen Energy
,
37
(
22
), pp.
16962
16966
.
15.
Guo
,
X.
,
Xiao
,
B.
,
Liu
,
S.
,
Hu
,
Z.
,
Luo
,
S.
, and
He
,
M.
,
2009
, “
An Experimental Study on Air Gasification of Biomass Micron Fuel (BMF) in a Cyclone Gasifier
,”
Int. J. Hydrogen Energy
,
34
(
3
), pp.
1265
1269
.
16.
He
,
P.-W.
,
Luo
,
S.-Y.
,
Cheng
,
G.
,
Xiao
,
B.
,
Cai
,
L.
, and
Wang
,
J.-B.
,
2012
, “
Gasification of Biomass Char With Air-Steam in a Cyclone Furnace
,”
Renewable Energy
,
37
(
1
), pp.
398
402
.
17.
Cheng
,
G.
,
He
,
P.-W.
,
Xiao
,
B.
,
Hu
,
Z.-Q.
,
Liu
,
S.-M.
,
Zhang
,
L.-G.
, and
Cai
,
L.
,
2012
, “
Gasification of Biomass Micron Fuel With Oxygen-Enriched Air: Thermogravimetric Analysis and Gasification in a Cyclone Furnace
,”
Energy
,
43
(
1
), pp.
329
333
.
18.
Syred
,
C.
,
Griffiths
,
A. J.
,
Syred
,
N.
,
Beedie
,
D.
, and
James
,
D.
,
2006
, “
A Clean, Efficient System for Producing Charcoal, Heat and Power (CHaP)
,”
Fuel
,
85
(
10
), pp.
1566
1578
.
19.
Syred
,
C.
,
Fick
,
W.
,
Griffiths
,
A. J.
, and
Syred
,
N.
,
2004
, “
Cyclone Gasifier and Cyclone Combustor for the Use of Biomass Derived Gas in the Operation of a Small Gas Turbine in Cogeneration Plants
,”
Fuel
,
83
(
17
), pp.
2381
2392
.
20.
Risberg
,
M.
,
Öhrman
,
O.
,
Gebart
,
B.
,
Nilsson
,
P.
,
Gudmundsson
,
A.
, and
Sanati
,
M.
,
2014
, “
Influence From Fuel Type on the Performance of an Air-Blown Cyclone Gasifier
,”
Fuel
,
116
, pp.
751
759
.
21.
Gao
,
J.
,
Zhao
,
Y.
,
Sun
,
S.
,
Che
,
H.
,
Zhao
,
G.
, and
Wu
,
J.
,
2012
, “
Experiments and Numerical Simulation of Sawdust Gasification in an Air Cyclone Gasifier
,”
Chem. Eng. J.
,
213
, pp.
97
103
.
22.
Sun
,
S.
,
Zhao
,
Y.
,
Tian
,
H.
,
Ling
,
F.
, and
Su
,
F.
,
2009
, “
Experimental Study on Cyclone Air Gasification of Wood Powder
,”
Bioresour. Technol.
,
100
(
17
), pp.
4047
4049
.
23.
Li
,
C.-Z.
,
2013
, “
Importance of Volatile–Char Interactions During the Pyrolysis and Gasification of Low-Rank Fuels—A Review
,”
Fuel
,
112
, pp.
609
623
.
24.
Nanou
,
P.
,
Murillo
,
H. E. G.
,
van Swaaij
,
W. P.
,
van Rossum
,
G.
, and
Kersten
,
S. R.
,
2013
, “
Intrinsic Reactivity of Biomass-Derived Char Under Steam Gasification Conditions-Potential of Wood Ash as Catalyst
,”
Chem. Eng. J.
,
217
, pp.
289
299
.
25.
Nowicki
,
L.
, and
Markowski
,
M.
,
2015
, “
Gasification of Pyrolysis Chars From Sewage Sludge
,”
Fuel
,
143
, pp.
476
483
.
26.
Qi
,
X.
,
Guo
,
X.
,
Xue
,
L.
, and
Zheng
,
C.
,
2014
, “
Effect of Iron on Shenfu Coal Char Structure and Its Influence on Gasification Reactivity
,”
J. Anal. Appl. Pyrolysis
,
110
, pp.
401
407
.
27.
Duman
,
G.
,
Uddin
,
M. A.
, and
Yanik
,
J.
,
2014
, “
The Effect of Char Properties on Gasification Reactivity
,”
Fuel Process. Technol.
,
118
, pp.
75
81
.
28.
Liu
,
L.
,
Cao
,
Y.
, and
Liu
,
Q.
,
2015
, “
Kinetics Studies and Structure Characteristics of Coal Char Under Pressurized CO2 Gasification Conditions
,”
Fuel
,
146
, pp.
103
110
.
29.
Ni
,
M.
,
Leung
,
D. Y.
,
Leung
,
M. K.
, and
Sumathy
,
K.
,
2006
, “
An Overview of Hydrogen Production From Biomass
,”
Fuel Process. Technol.
,
87
(
5
), pp.
461
472
.
30.
Dayton
,
D.
,
2002
, “A Review of the Literature on Catalytic Biomass Tar Destruction,” National Renewable Energy Laboratory, Golden, CO, Report No.
NREL/TP-510-32815
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.473.3709&rep=rep1&type=pdf
31.
Florin
,
N. H.
, and
Harris
,
A. T.
,
2008
, “
Enhanced Hydrogen Production From Biomass With In Situ Carbon Dioxide Capture Using Calcium Oxide Sorbents
,”
Chem. Eng. Sci.
,
63
(
2
), pp.
287
316
.
32.
McKendry
,
P.
,
2002
, “
Energy Production From Biomass—Part 1: Overview of Biomass
,”
Bioresour. Technol.
,
83
(
1
), pp.
37
46
.
33.
Boroson
,
M. L.
,
1987
, “Secondary Reactions of Tars From Pyrolysis of Sweet Gum Hardwood,”
Ph.D. thesis
, Massachusetts Institute of Technology, Cambridge, MA.https://dspace.mit.edu/handle/1721.1/14859
34.
Zhao
,
Y.
,
Sun
,
S.
,
Zhou
,
H.
,
Sun
,
R.
,
Tian
,
H.
,
Luan
,
J.
, and
Qian
,
J.
,
2010
, “
Experimental Study on Sawdust Air Gasification in an Entrained-Flow Reactor
,”
Fuel Process. Technol.
,
91
(
8
), pp.
910
914
.
35.
Jordan
,
C. A.
, and
Akay
,
G.
,
2012
, “
Occurrence, Composition and Dew Point of Tars Produced During Gasification of Fuel Cane Bagasse in a Downdraft Gasifier
,”
Biomass Bioenergy
,
42
, pp.
51
58
.
36.
Jordan
,
C. A.
, and
Akay
,
G.
,
2013
, “
Effect of CaO on Tar Production and Dew Point Depression During Gasification of Fuel Cane Bagasse in a Novel Downdraft Gasifier
,”
Fuel Process. Technol.
,
106
, pp.
654
660
.
37.
Coll
,
R.
,
Salvado
,
J.
,
Farriol
,
X.
, and
Montane
,
D.
,
2001
, “
Steam Reforming Model Compounds of Biomass Gasification Tars: Conversion at Different Operating Conditions and Tendency Towards Coke Formation
,”
Fuel Process. Technol.
,
74
(
1
), pp.
19
31
.
38.
Kurkela
,
E.
, and
Ståhlberg
,
P.
,
1992
, “
Air Gasification of Peat, Wood and Brown Coal in a Pressurized Fluidized-Bed Reactor—I: Carbon Conversion, Gas Yields and Tar Formation
,”
Fuel Process. Technol.
,
31
(
1
), pp.
1
21
.
39.
Zhang
,
R.
,
Wang
,
Y.
, and
Brown
,
R. C.
,
2007
, “
Steam Reforming of Tar Compounds Over Ni/Olivine Catalysts Doped With CeO2
,”
Energy Convers. Manage.
,
48
(
1
), pp.
68
77
.
40.
Kinoshita
,
C.
,
Wang
,
Y.
, and
Zhou
,
J.
,
1994
, “
Tar Formation Under Different Biomass Gasification Conditions
,”
J. Anal. Appl. Pyrolysis
,
29
(
2
), pp.
169
181
.
41.
Bridgwater
,
A.
,
1995
, “
The Technical and Economic Feasibility of Biomass Gasification for Power Generation
,”
Fuel
,
74
(
5
), pp.
631
653
.
42.
Gredinger
,
A.
,
Schweitzer
,
D.
,
Dieter
,
H.
, and
Scheffknecht
,
G.
,
2016
, “
A Measurement Device for Online Monitoring of Total Tar in Gasification Systems
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042205
.
43.
Wornat
,
M. J.
, and
Nelson
,
P. F.
,
1992
, “
Effects of Ion-Exchanged Calcium on Brown Coal Tar Composition as Determined by Fourier Transform Infrared Spectroscopy
,”
Energy Fuels
,
6
(
2
), pp.
136
142
.
44.
Tyler
,
R. J.
,
1979
, “
Flash Pyrolysis of Coals—1: Devolatilization of a Victorian Brown Coal in a Small Fluidized-Bed Reactor
,”
Fuel
,
58
(
9
), pp.
680
686
.
45.
Sharma
,
A.
,
Pareek
,
V.
, and
Zhang
,
D.
,
2015
, “
Biomass Pyrolysis—A Review of Modelling, Process Parameters and Catalytic Studies
,”
Renewable Sustainable Energy Rev.
,
50
, pp.
1081
1096
.
You do not currently have access to this content.