Biobutanol is an attractive, economical, and sustainable alternative fuel to petroleum oil which are depleting in sources due to the diminishing oil reserves and creating an increase in the concentrations of greenhouse gases in the atmosphere. Alternative routes to sustainable bacterial fermentation for the production of biobutanol are being sought and prepared for commercialization. The challenges for implementing an economically competitive fermentation process for biobutanol production include the availability of cheaper feedstock by improvement toward large-scaled production, improvement of fermentation efficiency, and better strategies for solvent recovery. The development of biobutanol production was analyzed and various methods to increase the fermentative butanol production were discussed in detail. It was found that the implementations of metabolic engineering of the Clostridia sp., advanced fermentation techniques, and utilization of renewed substrates are among the potential and economically viable technology in the production butanol production. Besides, this review outlines several challenges and potential future work for the advancement of fermentative butanol production.

References

1.
Jin
,
C.
,
Yao
,
M.
,
Liu
,
H.
,
Chia-fon
,
F. L.
, and
Ji
,
J.
,
2011
, “
Progress in the Production and Application of n-Butanol as a Biofuel
,”
Renewable Sustainable Energy Rev.
,
15
(
8
), pp.
4080
4106
.
2.
Willette
,
P. J.
,
Shaffer
,
B.
, and
Samuelsen
,
G. S.
,
2015
, “
Systematic Selection and Siting of Vehicle Fueling Infrastructure to Synergistically Meet Future Demands for Alternative Fuels
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
062204
.
3.
Karabaş
,
H.
,
2013
, “
Acorn (Quercus Frainetto L.) Kernel Oil as an Alternative Feedstock for Biodiesel Production in Turkey
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
011202
.
4.
Cadrazco
,
M.
,
Agudelo
,
J. R.
,
Orozco
,
L. Y.
, and
Estrada
,
V.
,
2017
, “
Genotoxicity of Diesel Particulate Matter Emitted by Port-Injection of Hydrous Ethanol and n-Butanol
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042207
.
5.
Nigam
,
P. S.
, and
Singh
,
A.
,
2011
, “
Production of Liquid Biofuels From Renewable Resources
,”
Prog. Energy Combust. Sci.
,
37
(
1
), pp.
52
68
.
6.
Zhu
,
Y.
,
Xin
,
F.
,
Chang
,
Y.
,
Zhao
,
Y.
, and
Weichong
,
W.
,
2015
, “
Feasibility of Reed for Biobutanol Production Hydrolyzed by Crude Cellulase
,”
Biomass Bioenergy
,
76
, pp.
24
30
.
7.
Escobar
,
J. C.
,
Lora
,
E. S.
,
Venturini
,
O. J.
,
Yáñez
,
E. E.
,
Castillo
,
E. F.
, and
Almazan
,
O.
,
2009
, “
Biofuels: Environment, Technology and Food Security
,”
Renewable Sustainable Energy Rev.
,
13
(
6–7
), pp.
1275
1287
.
8.
Patil
,
V.
,
Tran
,
K.-Q.
, and
Giselrød
,
H. R.
,
2008
, “
Towards Sustainable Production of Biofuels From Microalgae
,”
Int. J. Mol. Sci.
,
9
(
7
), pp.
1188
1195
.
9.
Yanai
,
T.
,
Han
,
X.
,
Reader
,
G. T.
,
Zheng
,
M.
, and
Tjong
,
J.
,
2015
, “
Preliminary Investigation of Direct Injection Neat n-Butanol in a Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
012205
.
10.
Maurya
,
R. K.
, and
Agarwal
,
A. K.
,
2015
, “
Combustion and Emission Characterization of n-Butanol Fueled HCCI Engine
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
011101
.
11.
Zheng
,
J.
,
Tashiro
,
Y.
,
Wang
,
Q.
, and
Sonomoto
,
K.
,
2015
, “
Recent Advances to Improve Fermentative Butanol Production: Genetic Engineering and Fermentation Technology
,”
J. Biosci. Bioeng.
,
119
(
1
), pp.
1
9
.
12.
Lee
,
S. Y.
,
Park
,
J. H.
,
Jang
,
S. H.
,
Nielsen
,
L. K.
,
Kim
,
J.
, and
Jung
,
K. S.
,
2008
, “
Fermentative Butanol Production by Clostridia
,”
Biotechnol. Bioeng.
,
101
(
2
), pp.
209
228
.
13.
Dürre
,
P.
,
2007
, “
Biobutanol: An Attractive Biofuel
,”
Biotechnol. J.
,
2
(
12
), pp.
1525
1534
.
14.
Ajanovic
,
A.
,
Jungmeier
,
G.
,
Beermann
,
M.
, and
Haas
,
R.
,
2013
, “
Driving on Renewables—On the Prospects of Alternative Fuels Up to 2050 From an Energetic Point-of-View in European Union Countries
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
031201
.
15.
Sreekumar
,
S.
,
Baer
,
Z. C.
,
Pazhamalai
,
A.
,
Gunbas
,
G.
,
Grippo
,
A.
,
Blanch
,
H. W.
,
Clark
,
D. S.
, and
Toste
,
F. D.
,
2015
, “
Production of an Acetone-Butanol-Ethanol Mixture From Clostridium Acetobutylicum and Its Conversion to High-Value Biofuels
,”
Nat. Protoc.
,
10
(
3
), pp.
528
537
.
16.
Green
,
E. M.
,
2011
, “
Fermentative Production of Butanol—The Industrial Perspective
,”
Curr. Opin. Biotechnol.
,
22
(
3
), pp.
337
343
.
17.
Mascal
,
M.
,
2012
, “
Chemicals From Biobutanol: Technologies and Markets
,”
Biofuels, Bioprod. Biorefin.
,
6
(
4
), pp.
483
493
.
18.
Pereira
,
L.
,
Dias
,
M.
,
Mariano
,
A.
,
Maciel Filho
,
R.
, and
Bonomi
,
A.
,
2015
, “
Economic and Environmental Assessment of n-Butanol Production in an Integrated First and Second Generation Sugarcane Biorefinery: Fermentative versus Catalytic Routes
,”
Appl. Energy
,
160
, pp.
120
131
.
19.
Wang
,
Y.
,
Ho
,
S.-H.
,
Yen
,
H.-W.
,
Nagarajan
,
D.
,
Ren
,
N.-Q.
,
Li
,
S.
,
Hu
,
Z.
,
Lee
,
D.-J.
,
Kondo
,
A.
, and
Chang
,
J.-S.
,
2017
, “
Current Advances on Fermentative Biobutanol Production Using Third Generation Feedstock
,”
Biotechnol. Adv.
,
35
(
8
), pp.
1049
1059
.
20.
Andersen
,
V. F.
,
Anderson
,
J.
,
Wallington
,
T.
,
Mueller
,
S.
, and
Nielsen
,
O. J.
,
2010
, “
Vapor Pressures of Alcohol−Gasoline Blends
,”
Energy Fuels
,
24
(
6
), pp.
3647
3654
.
21.
Dürre
,
P.
,
2008
, “
Fermentative Butanol Production
,”
Ann. New York Acad. Sci.
,
1125
(
1
), pp.
353
362
.
22.
Ezeji
,
T. C.
,
Qureshi
,
N.
, and
Blaschek
,
H. P.
,
2007
, “
Bioproduction of Butanol From Biomass: From Genes to Bioreactors
,”
Curr. Opin. Biotechnol.
,
18
(
3
), pp.
220
227
.
23.
Hoekman
,
S. K.
,
2009
, “
Biofuels in the US–Challenges and Opportunities
,”
Renewable Energy
,
34
(
1
), pp.
14
22
.
24.
Plaza
,
A.
,
Merlet
,
G.
,
Hasanoglu
,
A.
,
Isaacs
,
M.
,
Sanchez
,
J.
, and
Romero
,
J.
,
2013
, “
Separation of Butanol From ABE Mixtures by Sweep Gas Pervaporation Using a Supported Gelled Ionic Liquid Membrane: Analysis of Transport Phenomena and Selectivity
,”
J. Membr. Sci.
,
444
, pp.
201
212
.
25.
Qureshi
,
N.
, and
Blaschek
,
H.
,
2001
, “
Recent Advances in ABE Fermentation: Hyper-Butanol Producing Clostridium Beijerinckii BA101
,”
J. Ind. Microbiol. Biotechnol.
,
27
(
5
), pp.
287
291
.
26.
Ladisch
,
M. R.
,
1991
, “
Fermentation-Derived Butanol and Scenarios for Its Uses in Energy-Related Applications
,”
Enzyme. Microb. Technol.
,
13
(
3
), pp.
280
283
.
27.
Ezeji
,
T.
,
Milne
,
C.
,
Price
,
N. D.
, and
Blaschek
,
H. P.
,
2010
, “
Achievements and Perspectives to Overcome the Poor Solvent Resistance in Acetone and Butanol-Producing Microorganisms
,”
Appl. Microbiol. Biotechnol.
,
85
(
6
), pp.
1697
1712
.
28.
Sukumaran
,
R.
,
Gottumukkala
,
L.
,
Rajasree
,
K.
,
Alex
,
D.
, and
Pandey
,
A.
,
2011
,
Butanol Fuel From Biomass: Revisiting ABE Fermentation
,
Academic Press
,
Burlington, MA
.
29.
Gottwald
,
M.
, and
Gottschalk
,
G.
,
1985
, “
The Internal pH of Clostridium acetobutylicum and Its Effect on the Shift From Acid to Solvent Formation
,”
Arch. Microbiol.
,
143
(
1
), pp.
42
46
.
30.
Huang
,
L.
,
Gibbins
,
L.
, and
Forsberg
,
C. W.
,
1985
, “
Transmembrane pH Gradient and Membrane Potential in Clostridium Acetobutylicum During Growth Under Acetogenic and Solventogenic Conditions
,”
Appl. Environ. Microbiol.
,
50
(
4
), pp.
1043
1047
.
31.
Bennett
,
G. N.
, and
Rudolph
,
F. B.
,
1995
, “
The Central Metabolic Pathway From Acetyl-CoA to Butyryl-CoA in Clostridium Acetobutylicum
,”
FEMS Microbiol. Rev.
,
17
(
3
), pp.
241
249
.
32.
Fontaine
,
L.
,
Meynial-Salles
,
I.
,
Girbal
,
L.
,
Yang
,
X.
,
Croux
,
C.
, and
Soucaille
,
P.
,
2002
, “
Molecular Characterization and Transcriptional Analysis of adhE2, the Gene Encoding the NADH-Dependent Aldehyde/Alcohol Dehydrogenase Responsible for Butanol Production in Alcohologenic Cultures of Clostridium acetobutylicum ATCC 824
,”
J. Bacteriol.
,
184
(
3
), pp.
821
830
.
33.
Lépiz-Aguilar
,
L.
,
Rodríguez-Rodríguez
,
C. E.
,
Arias
,
M. L.
,
Lutz
,
G.
, and
Ulate
,
W.
,
2011
, “
Butanol Production by Clostridium Beijerinckii BA101 Using Cassava Flour as Fermentation Substrate: Enzymatic Versus Chemical Pretreatments
,”
World J. Microbiol. Biotechnol.
,
27
(
8
), pp.
1933
1939
.
34.
Balan
,
V.
,
2014
, “
Current Challenges in Commercially Producing Biofuels From Lignocellulosic Biomass
,”
ISRN Biotechnol.
,
2014
, p.
463074
.
35.
Majidian
,
P.
,
Tabatabaei
,
M.
,
Zeinolabedini
,
M.
,
Naghshbandi
,
M. P.
, and
Chisti
,
Y.
,
2017
, “
Metabolic Engineering of Microorganisms for Biofuel Production
,”
Renewable Sustainable Energy Rev.
,
82
(
3
), pp.
3863
3885
.
36.
Cary
,
J.
,
Petersen
,
D.
,
Papoutsakis
,
E.
, and
Bennett
,
G.
,
1990
, “
Cloning and Expression of Clostridium Acetobutylicum ATCC 824 Acetoacetyl-Coenzyme A: Acetate/Butyrate: Coenzyme A-Transferase in Escherichia Coli
,”
Appl. Environ. Microbiol.
,
56
(
6
), pp.
1576
1583
.
37.
Tomas
,
C. A.
,
Beamish
,
J.
, and
Papoutsakis
,
E. T.
,
2004
, “
Transcriptional Analysis of Butanol Stress and Tolerance in Clostridium Acetobutylicum
,”
J. Bacteriol.
,
186
(
7
), pp.
2006
2018
.
38.
Alper
,
H.
,
Moxley
,
J.
,
Nevoigt
,
E.
,
Fink
,
G. R.
, and
Stephanopoulos
,
G.
,
2006
, “
Engineering Yeast Transcription Machinery for Improved Ethanol Tolerance and Production
,”
Science
,
314
(
5805
), pp.
1565
1568
.
39.
Papoutsakis
,
E. T.
,
2008
, “
Engineering Solventogenic Clostridia
,”
Curr. Opin. Biotechnol.
,
19
(
5
), pp.
420
429
.
40.
Lin
,
Y.-L.
, and
Blaschek
,
H. P.
,
1983
, “
Butanol Production by a Butanol-Tolerant Strain of Clostridium Acetobutylicum in Extruded Corn Broth
,”
Appl. Environ. Microbiol.
,
45
(
3
), pp.
966
973
.
41.
Tummala
,
S. B.
,
Junne
,
S. G.
, and
Papoutsakis
,
E. T.
,
2003
, “
Antisense RNA Downregulation of Coenzyme a Transferase Combined With Alcohol-Aldehyde Dehydrogenase Overexpression Leads to Predominantly Alcohologenic Clostridium acetobutylicum Fermentations
,”
J. Bacteriol.
,
185
(
12
), pp.
3644
3653
.
42.
Artış
,
Ü.
,
2008
, “
Enhanced Butanol Production by Mutant Strains of Clostridium Acetobutylicum in Molasses Medium
,”
Turk. J. Biochem.
,
33
(
1
), pp.
25
30
.
43.
Annous
,
B. A.
, and
Blaschek
,
H. P.
,
1991
, “
Isolation and Characterization of Clostridium Acetobutylicum Mutants With Enhanced Amylolytic Activity
,”
Appl. Environ. Microbiol.
,
57
(
9
), pp.
2544
2548
.
44.
Jiang
,
Y.
,
Xu
,
C.
,
Dong
,
F.
,
Yang
,
Y.
,
Jiang
,
W.
, and
Yang
,
S.
,
2009
, “
Disruption of the Acetoacetate Decarboxylase Gene in Solvent-Producing Clostridium Acetobutylicum Increases the Butanol Ratio
,”
Metab. Eng.
,
11
(
4–5
), pp.
284
291
.
45.
Lee
,
S.-H.
,
Kim
,
S.
,
Kim
,
J. Y.
,
Cheong
,
N. Y.
, and
Kim
,
K. H.
,
2016
, “
Enhanced Butanol Fermentation Using Metabolically Engineered Clostridium Acetobutylicum With Ex Situ Recovery of Butanol
,”
Bioresour. Technol.
,
218
, pp.
909
917
.
46.
Dusséaux
,
S.
,
Croux
,
C.
,
Soucaille
,
P.
, and
Meynial-Salles
,
I.
,
2013
, “
Metabolic Engineering of Clostridium Acetobutylicum ATCC 824 for the High-Yield Production of a Biofuel Composed of an Isopropanol/Butanol/Ethanol Mixture
,”
Metab. Eng.
,
18
, pp.
1
8
.
47.
Liu
,
D.
,
Chen
,
Y.
,
Ding
,
F.
,
Guo
,
T.
,
Xie
,
J.
,
Zhuang
,
W.
,
Niu
,
H.
,
Shi
,
X.
,
Zhu
,
C.
, and
Ying
,
H.
,
2015
, “
Simultaneous Production of Butanol and Acetoin by Metabolically Engineered Clostridium Acetobutylicum
,”
Metab. Eng.
,
27
, pp.
107
114
.
48.
Nanda
,
S.
,
Golemi-Kotra
,
D.
,
McDermott
,
J. C.
,
Dalai
,
A. K.
,
Gökalp
,
I.
, and
Kozinski
,
J. A.
,
2017
, “
Fermentative Production of Butanol: Perspectives on Synthetic Biology
,”
New Biotechnol.
,
37
(Pt.
B
), pp.
210
221
.
49.
Qureshi
,
N.
,
Saha
,
B. C.
,
Hector
,
R. E.
,
Hughes
,
S. R.
, and
Cotta
,
M. A.
,
2008
, “
Butanol Production From Wheat Straw by Simultaneous Saccharification and Fermentation Using Clostridium Beijerinckii—Part I: Batch Fermentation
,”
Biomass Bioenergy
,
32
(
2
), pp.
168
175
.
50.
Ezeji
,
T.
,
Qureshi
,
N.
, and
Blaschek
,
H.
,
2004
, “
Acetone Butanol Ethanol (ABE) Production From Concentrated Substrate: Reduction in Substrate Inhibition by Fed-Batch Technique and Product Inhibition by Gas Stripping
,”
Appl. Microbiol. Biotechnol.
,
63
(
6
), pp.
653
658
.
51.
Ni
,
Y.
, and
Sun
,
Z.
,
2009
, “
Recent Progress on Industrial Fermentative Production of Acetone–Butanol–Ethanol by Clostridium Acetobutylicum in China
,”
Appl. Microbiol. Biotechnol.
,
83
(
3
), p.
415
–423.
52.
Qureshi
,
N.
,
Schripsema
,
J.
,
Lienhardt
,
J.
, and
Blaschek
,
H.
,
2000
, “
Continuous Solvent Production by Clostridium Beijerinckii BA101 Immobilized by Adsorption Onto Brick
,”
World J. Microbiol. Biotechnol.
,
16
(
4
), pp.
377
382
.
53.
Kumar
,
M.
, and
Gayen
,
K.
,
2011
, “
Developments in Biobutanol Production: New Insights
,”
Appl. Energy
,
88
(
6
), pp.
1999
2012
.
54.
Ezeji
,
T. C.
,
Qureshi
,
N.
, and
Blaschek
,
H. P.
,
2004
, “
Butanol Fermentation Research: Upstream and Downstream Manipulations
,”
Chem. Rec.
,
4
(
5
), pp.
305
314
.
55.
Jones
,
D. T.
, and
Woods
,
D. R.
,
1986
, “
Acetone-Butanol Fermentation Revisited
,”
Microbiol. Rev.
,
50
(
4
), pp.
484
524
.
56.
Schmidt
,
G. A.
,
Ruedy
,
R. A.
,
Miller
,
R. L.
, and
Lacis
,
A. A.
,
2010
, “
Attribution of the Present‐Day Total Greenhouse Effect
,”
J. Geophys. Res. Atmos.
,
115
(
D20
), p.
D20106
.
57.
Desai
,
R. P.
,
Nielsen
,
L. K.
, and
Papoutsakis
,
E. T.
,
1999
, “
Stoichiometric Modeling of Clostridium Acetobutylicum Fermentations With Non-Linear Constraints
,”
J. Biotechnol.
,
71
(
1–3
), pp.
191
205
.
58.
Wang
,
S.
,
Dong
,
S.
,
Wang
,
P.
,
Tao
,
Y.
, and
Wang
,
Y.
,
2017
, “
Genome Editing in Clostridium Saccharoperbutylacetonicum N1-4 With the CRISPR-Cas9 System
,”
Appl. Environ. Microbiol.
,
83
(
10
), p.
e00233-17
.
59.
Wang
,
Y.
,
Zhang
,
Z.-T.
,
Seo
,
S.-O.
,
Lynn
,
P.
,
Lu
,
T.
,
Jin
,
Y.-S.
, and
Blaschek
,
H. P.
,
2016
, “
Bacterial Genome Editing With CRISPR-Cas9: Deletion, Integration, Single Nucleotide Modification, and Desirable ‘Clean’ Mutant Selection in Clostridium Beijerinckii as an Example
,”
ACS Synth. Biol.
,
5
(
7
), pp.
721
732
.
60.
Pyrgakis
,
K. A.
,
de Vrije
,
T.
,
Budde
,
M. A.
,
Kyriakou
,
K.
,
López-Contreras
,
A. M.
, and
Kokossis
,
A. C.
,
2016
, “
A Process Integration Approach for the Production of Biological Iso-Propanol, Butanol and Ethanol Using Gas Stripping and Adsorption as Recovery Methods
,”
Biochem. Eng. J.
,
116
, pp.
176
194
.
61.
Oudshoorn
,
A.
,
van der Wielen
,
L. A.
, and
Straathof
,
A. J.
,
2009
, “
Adsorption Equilibria of Bio-Based Butanol Solutions Using Zeolite
,”
Biochem. Eng. J.
,
48
(
1
), pp.
99
103
.
62.
Qureshi
,
N.
, and
Blaschek
,
H. P.
,
1999
, “
Production of Acetone Butanol Ethanol (ABE) by a Hyper‐Producing Mutant Strain of Clostridium Beijerinckii BA101 and Recovery by Pervaporation
,”
Biotechnol. Prog.
,
15
(
4
), pp.
594
602
.
63.
Qureshi
,
N.
, and
Maddox
,
I.
,
2005
, “
Reduction in Butanol Inhibition by Perstraction: Utilization of Concentrated Lactose/Whey Permeate by Clostridium Acetobutylicum to Enhance Butanol Fermentation Economics
,”
Food Bioprod. Process
,
83
(
1
), pp.
43
52
.
64.
Dong
,
Z.
,
Liu
,
G.
,
Liu
,
S.
,
Liu
,
Z.
, and
Jin
,
W.
,
2014
, “
High Performance Ceramic Hollow Fiber Supported PDMS Composite Pervaporation Membrane for Bio-Butanol Recovery
,”
J. Membr. Sci.
,
450
, pp.
38
47
.
65.
Wang
,
X.
,
Chen
,
J.
,
Fang
,
M.
,
Wang
,
T.
,
Yu
,
L.
, and
Li
,
J.
,
2016
, “
ZIF-7/PDMS Mixed Matrix Membranes for Pervaporation Recovery of Butanol From Aqueous Solution
,”
Sep. Purif. Technol.
,
163
, pp.
39
47
.
66.
Qureshi
,
N.
,
Hodge
,
D.
, and
Vertes
,
A.
,
2014
,
Biorefineries: Integrated Biochemical Processes for Liquid Biofuels
,
Elsevier
,
Amsterdam, The Netherlands
.
67.
Diltz
,
R. A.
,
Marolla
,
T. V.
,
Henley
,
M. V.
, and
Li
,
L.
,
2007
, “
Reverse Osmosis Processing of Organic Model Compounds and Fermentation Broths
,”
Bioresour. Technol.
,
98
(
3
), pp.
686
695
.
68.
Bousbaa
,
H.
,
Sary
,
A.
,
Tazerout
,
M.
, and
Liazid
,
A.
,
2012
, “
Investigations on a Compression Ignition Engine Using Animal Fats and Vegetable Oil as Fuels
,”
ASME J. Energy Resour. Technol.
,
134
(
2
), p.
022202
.
69.
Soloiu
,
V.
,
Duggan
,
M.
,
Ochieng
,
H.
,
Williams
,
D.
,
Molina
,
G.
, and
Vlcek
,
B.
,
2013
, “
Investigation of Low Temperature Combustion Regimes of Biodiesel With n-Butanol Injected in the Intake Manifold of a Compression Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
041101
.
70.
Ezeji
,
T.
,
Qureshi
,
N.
, and
Blaschek
,
H. P.
,
2007
, “
Butanol Production From Agricultural Residues: Impact of Degradation Products on Clostridium beijerinckii Growth and Butanol Fermentation
,”
Biotechnol. Bioeng.
,
97
(
6
), pp.
1460
1469
.
71.
Wang
,
L.
, and
Chen
,
H.
,
2011
, “
Increased Fermentability of Enzymatically Hydrolyzed Steam-Exploded Corn Stover for Butanol Production by Removal of Fermentation Inhibitors
,”
Process Biochem.
,
46
(
2
), pp.
604
607
.
72.
Cho
,
D. H.
,
Shin
,
S.-J.
,
Sang
,
B.-I.
,
Eom
,
M.-H.
, and
Kim
,
Y. H.
,
2013
, “
ABE Production From Yellow Poplar Through Alkaline Pre-Hydrolysis, Enzymatic Saccharification, and Fermentation
,”
Biotechnol. Bioprocess Eng.
,
18
(
5
), pp.
965
971
.
73.
Claassen
,
P. A.
,
Budde
,
M. A.
, and
López-Contreras
,
A. M.
,
2000
, “
Acetone, Butanol and Ethanol Production From Domestic Organic Waste by Solventogenic Clostridia
,”
J. Mol. Microbiol. Biotechnol.
,
2
(
1
), pp.
39
44
.
74.
Lu
,
C.
,
Dong
,
J.
, and
Yang
,
S.-T.
,
2013
, “
Butanol Production From Wood Pulping Hydrolysate in an Integrated Fermentation–Gas Stripping Process
,”
Bioresour. Technol.
,
143
, pp.
467
475
.
75.
Wang
,
Y.
, and
Blaschek
,
H. P.
,
2011
, “
Optimization of Butanol Production From Tropical Maize Stalk Juice by Fermentation With Clostridium Beijerinckii NCIMB 8052
,”
Bioresour. Technol.
,
102
(
21
), pp.
9985
9990
.
76.
Qureshi
,
N.
,
Saha
,
B. C.
,
Dien
,
B.
,
Hector
,
R. E.
, and
Cotta
,
M. A.
,
2010
, “
Production of Butanol (a Biofuel) From Agricultural Residues—Part I: Use of Barley Straw Hydrolysate
,”
Biomass Bioenergy
,
34
(
4
), pp.
559
565
.
77.
Gao
,
K.
, and
Rehmann
,
L.
,
2014
, “
ABE Fermentation From Enzymatic Hydrolysate of NaOH-Pretreated Corncobs
,”
Biomass Bioenergy
,
66
, pp.
110
115
.
78.
Sarchami
,
T.
, and
Rehmann
,
L.
,
2014
, “
Optimizing Enzymatic Hydrolysis of Inulin From Jerusalem Artichoke Tubers for Fermentative Butanol Production
,”
Biomass Bioenergy
,
69
, pp.
175
182
.
79.
Al-Shorgani
,
N. K. N.
,
Kalil
,
M. S.
,
Ali
,
E.
,
Hamid
,
A. A.
, and
Yusoff
,
W. M. W.
,
2012
, “
The Use of Pretreated Palm Oil Mill Effluent for Acetone–Butanol–Ethanol Fermentation by Clostridium Saccharoperbutylacetonicum N1-4
,”
Clean Technol. Environ. Policy
,
14
(
5
), pp.
879
887
.
80.
Al-Shorgani
,
N. K. N.
,
Kalil
,
M. S.
, and
Yusoff
,
W. M. W.
,
2012
, “
Biobutanol Production From Rice Bran and De-Oiled Rice Bran by Clostridium Saccharoperbutylacetonicum N1-4
,”
Bioprocess Biosyst. Eng.
,
35
(
5
), pp.
817
826
.
81.
Malaviya
,
A.
,
Jang
,
Y.-S.
, and
Lee
,
S. Y.
,
2012
, “
Continuous Butanol Production With Reduced Byproducts Formation From Glycerol by a Hyper Producing Mutant of Clostridium pasteurianum
,”
Appl. Microbiol. Biotechnol.
,
93
(
4
), pp.
1485
1494
.
82.
Ndaba
,
B.
,
Chiyanzu
,
I.
, and
Marx
,
S.
,
2015
, “
n-Butanol Derived From Biochemical and Chemical Routes: A Review
,”
Biotechnol. Rep.
,
8
, pp.
1
9
.
You do not currently have access to this content.