In this work, we have applied a machine learning (ML) technique to provide insights into the causes of cycle-to-cycle variation (CCV) in a gasoline spark-ignited (SI) engine. The analysis was performed on a set of large eddy simulation (LES) calculations of a single cylinder of a four-cylinder port-fueled SI engine. The operating condition was stoichiometric, without significant knock, at a load of 16 bar brake mean effective pressure (BMEP), at an engine speed of 2500 rpm. A total of 123 cycles was simulated. Of these, 49 were run in sequence, while 74 were run in parallel. For the parallel approach, each cycle is initialized with its own synthetic turbulent field to generate CCV, as a part of another work performed by us. In this work, we used 3D information from all 123 cycles to compute flame topology and pre-ignition flow-field metrics. We then evaluated correlations between these metrics and peak cylinder pressure (PCP) employing an ML technique called random forest. The computed metrics form the inputs to the random forest model, and PCP is the output. This model captures the effect of all inputs, as well as interactions between them owing to its decision-tree structure. The goal of this work is to demonstrate (as a first step) that ML models can implicitly learn complex relationships between the pre-ignition flow-fields, the flame shapes, and the eventual outcome of the cycle (whether a cycle will be a high or a low cycle).

References

1.
Patterson
,
D. J.
,
1966
, “
Cylinder Pressure Variations, a Fundamental Combustion Problem
,”
SAE
Paper No. 660129.
2.
Ozdor
,
N.
,
Dulger
,
E.
, and
Sher
,
E.
,
1994
, “
Cyclic Variability in Spark-Ignition Engines. A Literature Survey
,”
SAE
Paper No. 940987.
3.
Srinivasan
,
K. K.
,
Krishnan
,
S. R.
, and
Qi
,
Y.
,
2013
, “
Cyclic Combustion Variations in Dual Fuel Partially Premized Pilot-Ignited Natural Gas Engines
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
012003
.
4.
Zhou
,
L.
,
Shao
,
A.
,
Hua
,
J.
,
Wei
,
H.
, and
Feng
,
D.
,
2018
, “
Effect of Retarded Injection Timing on Knock Resistance and Cycle to Cycle Variation in GDI Engine
,”
ASME J. Energy Resour. Technol.
,
140
(7), p. 072202.
5.
Scarcelli
,
R.
,
Sevik
,
J.
,
Wallner
,
T.
,
Richards
,
K.
,
Pomraning
,
E.
, and
Senecal
,
P. K.
,
2015
, “
Capturing Cyclic Variability in EGR Dilute SI Combustion Using Multi-Cycle RANS
,”
ASME
Paper No. ICEF2015-1045.
6.
Scarcelli
,
R.
,
Richards
,
K.
,
Pomraning
,
E.
,
Senecal
,
P. K.
,
Wallner
,
T.
, and
Sevik
,
J.
,
2016
, “
Cycle-to-Cycle Variations in Multi-Cycle Engine RANS Simulations
,”
SAE
Paper No. 2016-01-0593.
7.
Moureau
,
V.
,
Barton
,
I.
,
Angelberger
,
C.
, and
Poinsot
,
T.
,
2004
, “
Toward Large Eddy Simulation in Internal-Combustion Engines: Simulation of a Compressed Tumble Flow
,”
SAE
Paper No. 2004-01-1995.
8.
Vermorel
,
O.
,
Richard
,
S.
,
Colin
,
O.
,
Angelberger
,
C.
,
Benkenida
,
A.
, and
Veynante
,
D.
,
2009
, “
Toward the Understanding of Cyclic Variability in a Spark Ignited Engine Using Multi-Cycle LES
,”
Combust. Flame
,
156
(
8
), pp.
1525
1541
.
9.
Fontanesi
,
S.
,
Paltrinieri
,
S.
,
Tiberi
,
A.
, and
D'Adamo
,
A.
,
2013
, “
LES Multi-Cycle Analysis of a High Performance GDI Engine
,”
SAE
Paper No. 2013-01-1080.
10.
Fontanesi
,
S.
,
d'Adamo
,
A.
, and
Rutland
,
C. J.
,
2015
, “
Large-Eddy Simulation Analysis of Spark Configuration Effect on Cycle-to-Cycle Variability of Combustion and Knock
,”
Int. J. Engine Res.
,
16
(
3
), pp.
403
418
.
11.
d'Adamo
,
A.
,
Breda
,
S.
,
Fontanesi
,
S.
, and
Cantore
,
G.
,
2015
, “
LES Modeling of Spark-Ignition Cycle-to-Cycle Variability on a Highly Downsized DISI Engine
,”
SAE Int. J. Fuels Lubr.
,
8
(
5
), pp.
2029
2041
.
12.
Enaux
,
B.
,
Granet
,
V.
,
Vermorel
,
O.
,
Lacour
,
C.
,
Pera
,
C.
,
Angelberger
,
C.
, and
Poinsot
,
T.
,
2011
, “
LES Study of Cycle-to-Cycle Variations in a Spark Ignition Engine
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
3115
3122
.
13.
Koch
,
J.
,
Schmitt
,
M.
,
Wright
,
Y. M.
,
Steurs
,
K.
, and
Boulouchos
,
K.
,
2014
, “
LES Multi-Cycle Analysis of the Combustion Process in a Small SI Engine
,”
SAE Int. J. Fuels Lubr.
,
7
(
1
), pp.
269
285
.
14.
Truffin
,
K.
,
Angelberger
,
C.
,
Richard
,
S.
, and
Pera
,
C.
,
2015
, “
Using Large-Eddy Simulation and Multivariate Analysis to Understand the Sources of Combustion Cyclic Variability in a Spark-Ignition Engine
,”
Combust. Flame
,
162
(
12
), pp.
4371
4390
.
15.
Tatschl
,
R.
,
Bogensperger
,
M.
,
Pavlovic
,
Z.
,
Priesching
,
P.
,
Schuemie
,
H.
,
Vitek
,
O.
, and
Macek
,
J.
,
2013
, “
LES Simulation of Flame Propagation in a Direct-Injection SI-Engine to Identify the Causes of Cycle-to-Cycle Combustion Variations
,”
SAE
Paper No. 2013-01-1084.
16.
Granet
,
V.
,
Vermorel
,
O.
,
Lacour
,
C.
,
Enaux
,
B.
,
Dugué
,
V.
, and
Poinsot
,
T.
,
2012
, “
Large-Eddy Simulation and Experimental Study of Cycle-to-Cycle Variations of Stable and Unstable Operating Points in a Spark Ignition Engine
,”
Combust. Flame
,
159
(
4
), pp.
1562
1575
.
17.
Ameen
,
M. M.
,
Yang
,
X.
,
Kuo
,
T. W.
,
Xue
,
Q.
, and
Som
,
S.
,
2015
, “
LES for Simulating the Gas Exchange Process in a Spark Ignition Engine
,”
ASME
Paper No. ICEF2015-1002.
18.
Zhao
,
L.
,
Moiz
,
A. A.
,
Som
,
S.
,
Fogla
,
N.
,
Bybee
,
M.
,
Wahiduzzaman
,
S.
, and
Mirzaeian
,
M.
,
2017
, “
Examining the Role of Flame Topologies and In-Cylinder Flow Fields on Cyclic Variability in Spark-Ignited Engines Using Large Eddy Simulation
,”
Int. J. Engine Res.
, in press.
19.
Zhao
,
L.
,
Moiz
,
A. A.
,
Som
,
S.
,
Fogla
,
N.
,
Bybee
,
M.
,
Wahiduzzaman
,
S.
,
Mirzaeian
,
M.
,
Millo
,
F.
, and
Kodavasal
,
J.
,
2017
, “
Multi-Cycle Large Eddy Simulation to Capture Cycle-to-Cycle Variation (CCV) in Spark-Ignited (SI) Engines
,”
Tenth U.S. National Combustion Meeting
, College Park, MD, Apr. 23–26.https://iris.polito.it/handle/11583/2673451?mode=full.4423#.WvFOErlDGYk
20.
Ameen
,
M. M.
,
Yang
,
X.
,
Kuo
,
T. W.
, and
Som
,
S.
,
2017
, “
Parallel Methodology to Capture Cyclic Variability in Motored Engines
,”
Int. J. Engine Res.
,
18
(
4
), pp.
366
377
.
21.
Ho
,
T. K.
,
1995
, “
Random Decision Forests
,”
Third International Conference on Document Analysis and Recognition
(
ICDAR
), Montreal, QC, Canada, Aug. 14–15, p. 278.https://dl.acm.org/citation.cfm?id=844681
22.
Kodavasal
,
J.
,
Pei
,
Y.
,
Harms
,
K.
,
Ciatti
,
S.
,
Wagner
,
A.
,
Senecal
,
P. K.
,
García
,
M.
, and
Som
,
S.
,
2016
, “
Global Sensitivity Analysis of a Gasoline Compression Ignition Engine Simulation With Multiple Targets on an IBM Blue Gene/Q Supercomputer
,”
SAE
Paper No. 2016-01-0602.
23.
Kodavasal
,
J.
,
Van Dam
,
N.
,
Pei
,
Y.
,
Harms
,
K.
,
Maheshwari
,
K.
,
Wagner
,
A.
,
García
,
M.
,
Ciatti
,
S.
,
Senecal
,
P. K.
, and
Som
,
S.
,
2016
, “
Sensitivity Analysis on Key CFD Model Inputs for Gasoline Compression Ignition on an IBM Blue Gene/Q Supercomputer
,”
THIESEL Conference on Thermo- and Fluid Dynamic Processes in Direct Injection Engines
, Valencia, Sept. 13–16.
24.
Kodavasal
,
J.
,
Kolodziej
,
C. P.
,
Ciatti
,
S. A.
, and
Som
,
S.
,
2015
, “
Computational Fluid Dynamics Simulation of Gasoline Compression Ignition
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032212
.
25.
Kodavasal
,
J.
,
Kolodziej
,
C. P.
,
Ciatti
,
S. A.
, and
Som
,
S.
,
2017
, “
Effects of Injection Parameters, Boost, and Swirl Ratio on Gasoline Compression Ignition Operation at Idle and Low-Load Conditions
,”
Int. J. Engine Res.
,
18
(
8
), pp.
824
836
.
26.
Kolodziej
,
C.
,
Kodavasal
,
J.
,
Ciatti
,
S.
,
Som
,
S.
,
Shidore
,
N.
, and
Delhom
,
J.
,
2015
, “
Achieving Stable Engine Operation of Gasoline Compression Ignition Using 87 AKI Gasoline Down to Idle
,”
SAE
Paper No. 2015-01-0832.
27.
Kodavasal
,
J.
, and
Som
,
S.
,
2018
, “
Gasoline Compression Ignition—A Simulation-Based Perspective
,”
Advances in Internal Combustion Engine Research. Energy, Environment, and Sustainability
,
D.
Srivastava
,
A.
Agarwal
,
A.
Datta
, and
R
.
Maurya
, eds.,
Springer
,
Singapore
.
28.
Kodavasal
,
J.
,
Lavoie
,
G. A.
,
Assanis
,
D. N.
, and
Martz
,
J. B.
,
2014
, “
The Effects of Thermal and Compositional Stratification on the Ignition and Duration of Homogeneous Charge Compression Ignition Combustion
,”
Combust. Flame
,
162
(
2
), pp.
451
461
.
29.
Kodavasal
,
J.
,
Lavoie
,
G. A.
,
Assanis
,
D. N.
, and
Martz
,
J. B.
,
2015
, “
The Effect of Diluent Composition on Homogeneous Charge Compression Ignition Auto-Ignition and Combustion Duration
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3019
3026
.
30.
Kodavasal
,
J.
,
Lavoie
,
G. A.
,
Assanis
,
D. N.
, and
Martz
,
J. B.
,
2015
, “
Reaction-Space Analysis of Homogeneous Charge Compression Ignition Combustion With Varying Levels of Fuel Stratification Under Positive and Negative Valve Overlap Conditions
,”
Int. J. Engine Res.
,
17
(
7
), pp.
776
794
.
31.
Kodavasal
,
J.
,
2013
, “
Effect of Charge Preparation Strategy on HCCI Combustion
,”
Ph.D. thesis
, University of Michigan, Ann Arbor, MI.https://deepblue.lib.umich.edu/handle/2027.42/99766
32.
Kodavasal
,
J.
,
Keum
,
S. H.
, and
Babajimopoulos
,
A.
,
2011
, “
An Extended Multi-Zone Combustion Model for PCI Simulation
,”
Combust. Theory Modell.
,
15
(
6
), pp.
893
910
.
33.
Kodavasal
,
J.
,
McNenly
,
M. J.
,
Babajimopoulos
,
A.
,
Aceves
,
S. M.
,
Assanis
,
D. N.
,
Havstad
,
M. A.
, and
Flowers
,
D. L.
,
2013
, “
An Accelerated Multi-Zone Model for Engine Cycle Simulation of Homogeneous Charge Compression Ignition Combustion
,”
Int. J. Engine Res.
,
14
(
5
), pp.
416
433
.
34.
Kodavasal
,
J.
,
Harms
,
K.
,
Srivastava
,
P.
,
Som
,
S.
,
Quan
,
S.
,
Richards
,
K.
, and
García
,
M.
,
2016
, “
Development of a Stiffness-Based Chemistry Load Balancing Scheme, and Optimization of Input/Output and Communication, to Enable Massively Parallel High-Fidelity Internal Combustion Engine Simulations
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052203
.
35.
Sorgun
,
M.
,
Ozbayoglu
,
A. M.
, and
Ozbayoglu
,
M. E.
,
2014
, “
Support Vector Regression and Computational Fluid Dynamics Modeling of Newtonian and Non-Newtonian Fluids in Annulus With Pipe Rotation
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032901
.
36.
Moiz
,
A. A.
,
Pal
,
P.
,
Probst
,
D.
,
Pei
,
Y.
,
Zhang
,
Y.
,
Som
,
S.
, and
Kodavasal
,
J.
,
2018
, “
A Machine Learning-Genetic Algorithm Approach for Rapid Virtual Optimization Using High-Performance Computing
,”
SAE
Paper No. 2018-01-0190.
37.
Rostami
,
H.
, and
Manshad
,
A. K.
,
2014
, “
A New Support Vector Machine and Artificial Neural Networks for Prediction of Stuck Pipe in Drilling of Oil Fields
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
024502
.
38.
El-Emam
,
R. S.
, and
Dincer
,
I.
,
2016
, “
Assessment and Evolutionary Based Multi-Objective Optimization of a Novel Renewable-Based Polygeneration Energy System
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012003
.
39.
Van
,
S. L.
, and
Chon
,
B. H.
,
2017
, “
Effective Prediction and Management of a CO2 Flooding Process for Enhancing Oil Recovery Using Artificial Neural Networks
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032906
.
40.
Richards
,
K. J.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2017
, “CONVERGE v2.3 Manual,”
Convergent Science
,
Madison, WI
.
41.
Reitz
,
R.
, and
Diwakar
,
R.
,
1987
, “
Structure of High-Pressure Fuel Sprays
,”
SAE
Paper No. 870598.
42.
Senecal
,
P.
,
Richards
,
K.
,
Pomraning
,
E.
,
Yang
,
T.
,
Dai
,
M. Z.
,
McDavid
,
R. M.
,
Patterson
,
M. A.
,
Hou
,
S.
, and
Shethaji
,
T.
,
2007
, “
A New Parallel Cut-Cell Cartesian CFD Code for Rapid Grid Generation Applied to In-Cylinder Diesel Engine Simulations
,”
SAE
Paper No. 2007-01-0159.
43.
Pomraning
,
E.
, and
Rutland
,
C. J.
,
2002
, “
Dynamic One-Equation Nonviscosity Large-Eddy Simulation Model
,”
AIAA J.
,
40
(
4
), pp.
689
701
.
44.
Williams
,
F.
,
1985
, “
Turbulent Combustion
,”
The Mathematics of Combustion
,
J. D.
Buckmaster
, ed.,
Society for Industrial and Applied Mathematics
, Philadelphia, PA, pp.
197
1318
.
45.
Peters
,
N.
,
2000
,
Turbulent Combustion
,
Cambridge University Press
, Cambridge, UK.
46.
Pitsch
,
H.
,
2002
, “
A G-Equation Formulation for Large-Eddy Simulation of Premixed Turbulent Combustion
,” Annual Research Briefs, Center for Turbulence Research, Stanford, CA.
47.
Balaprakash
,
P.
,
Tiwari
,
A.
,
Wild
,
S. M.
,
Carrington
,
L.
, and
Hovland
,
P. D.
,
2016
, “
AutoMOMML: Automatic Multi-Objective Modeling With Machine Learning
,”
ISC High Performance (LNCS)
, Frankfurt, Germany, June 19–23, pp.
219
239
.
48.
Berthold
,
M. R.
,
Cebron
,
N.
,
Dill
,
F.
,
Gabriel
,
T. R.
,
Kötter
,
T.
,
Meinl
,
T.
,
Ohl
,
P.
,
Sieb
,
C.
,
Thiel
,
K.
, and
Wiswedel
,
B.
,
2007
, “
The Konstanz Information Miner
,”
Studies in Classification, Data Analysis, and Knowledge Organization
,
Springer
, Berlin.
You do not currently have access to this content.