A 2D model and heat transfer mechanism are proposed to analyze and study oxidative steam reforming of methane (OSRM) in a membrane reactor. The model describes mass and thermal dispersions for gas and solid phases. It also accounts for transport through the membrane. The effects of operating parameters on methane conversion and H2 yield are analyzed. The parameters considered are the bed temperature (800–1100 K), molar oxygen-to-carbon ratio (0.0–0.5), and steam-to-carbon ratio (1–4). The results show that our model prevents overestimation and provides valuable additional information about temperature and concentration gradients in membrane reactor which is not available in a simple one-dimensional approach. Simulation results show that large temperature and concentration gradients cannot be avoided. The particle properties and the bed diameter have a considerable effect on the extent of gas mixing. Effective gas mixing coefficient also increases with increasing gas and solid velocity. In membrane reactor, simulation results show that mixing which depends on operational and design parameters has a strong effect on the hydrogen conversion. Also, the removal of hydrogen with membranes breaks equilibrium barrier leading to efficient production of hydrogen, reduced reactor size, and tube lengths. The model can be used in real-time simulation of industrial reactors for control and optimization purposes.

References

1.
Balthasar
,
W.
,
1984
, “
Hydrogen Production and Technology: Today, Tomorrow and Beyond
,”
Int. J. Hydrogen Energy
,
9
(
8
), pp.
649
668
.
2.
Pugsley
,
T.
, and
Malcus
,
S.
,
1997
, “
Partial Oxidation of Methane in a Circulating Fluidized-Bed Catalytic Reactor
,”
Ind. Eng. Chem. Res.
,
36
(
11
), pp.
4567
4571
.
3.
Adris
,
A. M.
,
Pruden
,
B. B.
,
Lim
,
C. J.
, and
Grace
,
C. J.
,
1996
, “
On the Reported Attempts to Radically Improve the Performance of the Steam Methane Reforming Reactor
,”
Can. J. Chem. Eng.
,
74
(
2
), pp.
177
186
.
4.
Rostrup-Nielsen
,
J. R.
,
1984
, “
Sulfur-Passivated Nickel Catalysts for Carbon-Free Steam Reforming of Methane
,”
J. Catal.
,
85
(
1
), pp.
31
43
.
5.
Mokheimer
,
E. A.
,
Ibrar Hussain
,
M.
,
Ahmed
,
S.
,
Habib
,
M. A.
, and
Al-Qutub
,
A. A.
,
2014
, “
On the Modeling of Steam Methane Reforming
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
012001
.
6.
Rostrup-Nielsen
,
J. R.
,
1983
, “
Catalytic Steam Reforming
,”
Catalysis: Science and Technology
,
J. R.
Anderson
and
M.
Boudard
, eds.,
Springer
,
Berlin
, p.
289
.
7.
Trimm
,
D. L.
,
1997
, “
Coke Formation and Minimization During Steam Reforming Reactions
,”
Catal. Today
,
37
(
3
), pp.
233
238
.
8.
Leyko
,
A. B.
, and
Gupta
,
A. K.
,
2013
, “
Temperature and Pressure Effects on Hydrogen Separation From Syngas
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
034502
.
9.
de Deken
,
J. C.
,
Devos
,
E. F.
, and
Froment
,
G. F.
,
1982
, “
Steam Reforming of Natural Gas: Intrinsic Kinetics, Diffusional Influences, and Reactor Design
,”
Chem. React. Eng.
,
16
, pp.
181
197
.
10.
Xu
,
J.
, and
Froment
,
G. F.
,
1989
, “
Methane Steam Reforming, Methanation and Water–Gas Shift—I: Intrinsic Kinetics
,”
AIChE J.
,
35
(
1
), pp.
88
96
.
11.
Jin
,
W.
,
Gu
,
X.
,
Li
,
S.
,
Huang
,
P.
,
Xu
,
N.
, and
Shi
,
J.
,
2000
, “
Experimental and Simulation Study on a Catalyst Packed Tubular Dense Membrane Reactor for Partial Oxidation of Methane to Syngas
,”
Chem. Eng. Sci.
,
55
(
14
), pp.
2617
2625
.
12.
Ergun
,
S.
,
1952
, “
Fluid Flow Through Packed Columns
,”
Chem. Eng. Prog.
,
48
, pp.
89
94
.
13.
Shu
,
J.
,
Grandjean
,
B. P. A.
, and
Kaliaguine
,
S.
,
1994
, “
Methane Steam Reforming in Asymmetric Pd– and Pd–Ag/Porous SS Membrane Reactor
,”
Appl. Catal. A
,
119
(
2
), pp.
305
325
.
14.
Xie
,
D.
,
2001
, “
Modeling of Heat Transfer in Circulating Fluidized Beds
,” Ph.D. thesis, The University of British Columbia, Vancouver, BC.
15.
Rowe
,
P. N.
,
Claxton
,
K. T.
, and
Lewis
,
J. B.
,
1965
, “
Heat and Mass Transfer From a Single Sphere in an Extensive Flowing Fluid
,”
Trans. Inst. Chem. Eng.
,
43
, pp.
14
31
.http://archive.icheme.org/cgi-bin/somsid.cgi?type=header&record=950
16.
Hastaoglu
,
M. A.
,
Hilal
,
N.
,
Abdulkarim
,
M.
, and
El-Naas
,
M.
,
2000
, “
Transient Multi Gas–Solid Reactions in a Bubbling Fluidized Bed
,”
Can. J. Chem. Eng.
,
78
(
3
), pp.
433
441
.
17.
Dutta
,
A.
, and
Basu
,
B.
,
2004
, “
An Improved Cluster-Renewal Model for the Estimation of Heat Transfer Coefficients on the Furnace Walls of Commercial Circulating Fluidized Bed Boilers
,”
ASME J. Heat Transfer
,
126
(
6
), p.
001040
.
18.
Chan
,
S. H.
,
Hoang
,
D. L.
, and
Ding
,
O. L.
,
2005
, “
Transient Performance of an Autothermal Reformer—A 2-D Modeling Approach
,”
Int. J. Heat Mass Transfer
,
48
, pp.
19
20
.
19.
Chen
,
Z.
,
Yan
,
Y.
, and
Elnashaie
,
S. S. E. H.
,
2003
, “
Novel Circulating Fast Fluidized-Bed Membrane Reformer for Efficient Production of Hydrogen From Steam Reforming of Methane
,”
Chem. Eng. Sci
,
58
(
19
), p.
4335
.
20.
Dehkordi
,
A. M.
, and
Memari
,
M.
,
2009
, “
Compartment Model for Steam Reforming of Methane in a Membrane-Assisted Bubbling Fluidized-Bed Reactor
,”
Int. J. Hydrogen Energy
,
34
(
3
), pp.
1275
1291
.
21.
Gayan
,
P.
,
de Diego
,
L. F.
, and
Adanez
,
J.
,
1997
, “
Radial Gas Mixing in a Fast Fluidized Bed
,”
Powder Technol.
,
94
(
2
), pp.
163
171
.
22.
van Zoonen
,
D.
,
1962
, “
Measurements of Diffusional Phenomena and Velocity Profiles in a Vertical Riser
,”
Symposium on Interaction Between Fluids and Particles
, Institution of Chemical Engineers, London, pp.
64
71
.
23.
Yang
,
G. L.
,
Huang
,
Z.
, and
Zhao
,
L.
,
1983
, “
Radial Gas Dispersion in a Fast Fluidized Bed
,”
Fluidization
,
D.
Kunii
and
R.
Toei
, eds.,
Cambridge University Press
,
Cambridge, UK
, pp.
145
152
.
24.
Werther
,
J.
,
Hartge
,
E. U.
, and
Kruse
,
M.
,
1992
, “
Gas Mixing and Interphase Mass Transfer in the Circulating Fluidized Bed
,”
Fluidization
, Vol.
VII
,
O. E.
Potter
and
D. J.
Nicklin
, eds.,
Engineering Foundation
,
New York
, pp.
257
264
.
25.
Amos
,
G.
,
Rhodes
,
M. J.
, and
Mineo
,
H.
,
1993
, “
Gas Mixing in Gas–Solids Risers
,”
Chem. Eng. Sci.
,
48
(
5
), pp.
943
949
.
You do not currently have access to this content.