The implementation of reduced syngas combustion mechanisms in numerical combustion studies has become inevitable in order to reduce the computational cost without compromising the predictions' accuracy. In this regard, the present study evaluates the predictive capabilities of selected detailed, reduced, and global syngas chemical mechanisms by comparing the numerical results with experimental laminar flame speed (LFS) values of lean premixed (LPM) syngas flames. The comparisons are carried out at varying equivalence ratios, syngas compositions, operating pressures, and preheat temperatures to represent a range of operating conditions of modern fuel flexible combustion systems. NOx emissions predicted by the detailed mechanism, GRI-Mech. 3.0, are also used to study the accuracy of the selected mechanisms under these operating conditions. Moreover, the selected mechanisms' accuracy in predicting the laminar flame thickness (LFT), species concentrations of the reactants, and OH profiles at different equivalence ratios and syngas compositions are investigated as well. The LFS is generally observed to increase with increasing equivalence ratio, hydrogen content in the syngas, and preheat temperature, while it is decreased with increasing operating pressure. This trend is followed by all mechanisms understudy. The global mechanisms of Watanabe–Otaka and Jones–Lindstedt for syngas are consistently observed to over-predict and under-predict the LFS up to an average of 60% and 80%, respectively. The reduced mechanism of Slavinskaya has an average error of less than 20%, which is comparable to the average error of the GRI-Mech. 3.0. It however over-predicts the flame thickness by up to 30% when compared to GRI-Mech. 3.0. The NO prediction by Li mechanism and the reduced mechanisms are observed to be within 10% prediction range of the GRI-Mech. 3.0 at intermediate equivalence ratio (φ=0.74) up to stoichiometry. Moving toward more lean conditions, there is significant difference between the GRI-Mech. 3.0 NO prediction and those of the reduced mechanisms due to relative importance of the prompt NOx at lower temperature compared to thermal NOx that is only accounted for by the GRI-Mech. 3.0.

References

1.
Prathap
,
C.
,
Ray
,
A.
, and
Ravi
,
M.
,
2012
, “
Effects of Dilution With Carbon Dioxide on the Laminar Burning Velocity and Flame Stability of H2–CO Mixtures at Atmospheric Condition
,”
Combust. Flame
,
159
(
2
), pp.
482
492
.10.1016/j.combustflame.2011.08.006
2.
Hermeth
,
S.
,
Staffelbach
,
G.
,
Gicquel
,
L.
, and
Poinsot
,
T.
,
2013
, “
LES Evaluation of the Effects of Equivalence Ratio Fluctuations on the Dynamic Flame Response in a Real Gas Turbine Combustion Chamber
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3165
3173
.10.1016/j.proci.2012.07.013
3.
Gicquel
,
L.
,
Staffelbach
,
G.
, and
Poinsot
,
T.
,
2012
, “
Large Eddy Simulations of Gaseous Flames in Gas Turbine Combustion Chambers
,”
Prog. Energy Combust. Sci.
,
38
(
6
), pp.
782
817
.10.1016/j.pecs.2012.04.004
4.
Smith
,
G.
,
Golden
,
D.
,
Frenklach
,
M.
,
Moriarty
,
N.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C.
,
Hanson
,
R.
,
Song
,
S.
,
Gardiner
,
W.
,
Lissianski
,
V.
, and
Qin
,
Z.
, What's New in GRI-Mech 3.0. Available at: http://combustion.berkeley.edu/gri-mech/version30/text30.html
5.
Li
,
J.
,
Zhao
,
Z.
,
Kazakov
,
A.
,
Chaos
,
M.
,
Dryer
,
F.
, and
Scire
,
J.
,
2007
, “
A Comprehensive Kinetic Mechanism for CO, CH2O, and CH3OH Combustion
,”
Int. J. Chem. Kinet.
,
39
(
3
), pp.
109
136
.10.1002/kin.20218
6.
Nikolaou
,
Z.
,
Chen
,
J.
, and
Swaminathan
,
N.
,
2013
, “
A 5-Step Reduced Mechanism for Combustion of CO/H2/H2O/CH4/CO2 Mixtures With Low Hydrogen/Methane and High H2O Content
,”
Combust. Flame
,
160
(
1
), pp.
56
75
.10.1016/j.combustflame.2012.09.010
7.
Starik
,
A.
,
Titova
,
N.
,
Sharipov
,
A.
, and
Kozlov
,
V.
,
2010
, “
Syngas Oxidation Mechanism
,”
Combust. Explos. Shock Waves
,
46
(
5
), pp.
491
506
.10.1007/s10573-010-0065-x
8.
Marzouk
,
O.
, and
Huckaby
,
E.
,
2010
, “
A Comparative Study of Eight Finite-Rate Chemistry Kinetics for CO/H2 Combustion
,”
Eng. Appl. Comput. Fluid Mech.
,
4
(
3
), pp.
331
356
.10.1080/19942060.2010.11015322
9.
Davis
,
S.
,
Joshi
,
A.
,
Wang
,
H.
, and
Egolfopoulos
,
F.
,
2005
, “
An Optimized Kinetic Model of H2/CO Combustion
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
1283
1292
.10.1016/j.proci.2004.08.252
10.
Frassoldati
,
A.
,
Faravelli
,
T.
, and
Ranzi
,
E.
,
2007
, “
The Ignition, Combustion and Flame Structure of Carbon Monoxide/Hydrogen Mixtures. Note 1: Detailed Kinetic Modeling of Syngas Combustion Also in Presence of Nitrogen Compounds
,”
Int. J. Hydrogen Energy
,
32
(
15
), pp.
3471
3485
.10.1016/j.ijhydene.2007.01.011
11.
Boivin
,
P.
,
Jimenez
,
C.
,
Sanchez
,
A.
, and
Williams
,
F.
,
2011
, “
A Four-Step Reduced Mechanism for Syngas Combustion
,”
Combust. Flame
,
158
(
6
), pp.
1059
1063
.10.1016/j.combustflame.2010.10.023
12.
Sun
,
H.
,
Yang
,
S.
,
Jomaas
,
G.
, and
Law
,
C.
,
2007
, “
High-Pressure Laminar Flame Speeds and Kinetic Modeling of Carbon Monoxide/Hydrogen Combustion
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
439
446
.10.1016/j.proci.2006.07.193
13.
Saxena
,
P.
, and
Williams
,
F.
,
2006
, “
Testing a Small Detailed Chemical-Kinetic Mechanism for the Combustion of Hydrogen and Carbon Monoxide
,”
Combust. Flame
,
145
(
1–2
), pp.
316
323
.10.1016/j.combustflame.2005.10.004
14.
Slavinskaya
,
N.
,
Braun-Unkhoff
,
M.
, and
Frank
,
P.
,
2008
, “
Reduced Reaction Mechanisms for Methane and Syngas Combustion in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
130
(
2
), p.
021504
.10.1115/1.2719258
15.
Cuoci
,
A.
,
Frassoldati
,
A.
,
Faravelli
,
T.
, and
Ranzi
,
E.
,
2009
, “
Accuracy and Flexibility of Simplified Kinetic Models for CFD Applications
,” Combustion Colloquia, Universita'degli Studi di Napoli Federico II, pp.
26
28
.
16.
Rokni
,
E.
,
Moghaddas
,
A.
,
Askari
,
O.
, and
Metghalchi
,
H.
,
2014
, “
Measurement of Laminar Burning Speeds and Investigation of Flame Stability of Acetylene (C2H2)/Air Mixtures
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
012204
.10.1115/1.4028363
17.
Nicolas
,
G.
,
Janbozorgi
,
M.
, and
Metghalchi
,
H.
,
2014
, “
Constrained-Equilibrium Modeling of Methane Oxidation in Air
,”
ASME J. Energy Resour. Technol.
,
136
(
3
), p.
032205
.10.1115/1.4027692
18.
Askari
,
O.
,
Metghalchi
,
H.
,
Hannani
,
S. K.
,
Hemmati
,
H.
, and
Ebrahimi
,
R.
,
2014
, “
Lean Partially Premixed Combustion Investigation of Methane Direct-Injection Under Different Characteristic Parameters
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
022202
.10.1115/1.4026204
19.
Moghaddas
,
A.
,
Bennett
,
C.
,
Eisazadeh-Far
,
K.
, and
Metghalchi
,
H.
,
2012
, “
Measurement of Laminar Burning Speeds and Determination of Onset of Auto-Ignition of Jet-A/Air and Jet Propellant-8/Air Mixtures in a Constant Volume Spherical Chamber
,”
ASME J. Energy Resour. Technol.
,
134
(
2
), p.
022205
.10.1115/1.4006480
20.
Dam
,
B.
,
Ardha
,
V.
, and
Choudhuri
,
A.
,
2010
, “
Laminar Flame Velocity of Syngas Fuels
,”
ASME J. Energy Resour. Technol.
,
132
(
4
), p.
044501
.10.1115/1.4002762
21.
Natarajan
,
J.
,
Kochar
,
Y.
,
Lieuwen
,
T.
, and
Seitzman
,
J.
, “
Laminar Flame Speeds of H2/CO/O2/He Mixtures at Elevated Pressure and Preheat Temperature
,”
2007 Technical Meeting
, Eastern States Section of the Combustion Institute, University of Virginia, Charlottesville, VA, pp. 1–9.
22.
Dong
,
C.
,
Zhou
,
Q.
,
Zhao
,
Q.
,
Zhang
,
Y.
,
Xu
,
T.
, and
Hui
,
S.
,
2009
, “
Experimental Study on the Laminar Flame Speed of Hydrogen/Carbon Monoxide/Air Mixtures
,”
Fuel
,
88
(
10
), pp.
1858
1863
.10.1016/j.fuel.2009.04.024
23.
Driscoll
,
J. F.
,
2008
, “
Turbulent Premixed Combustion: Flamelet Structure and Its Effect on Turbulent Burning Velocities
,”
Prog. Energy Combust. Sci.
,
34
(
1
), pp.
91
134
.10.1016/j.pecs.2007.04.002
24.
Yousefian
,
S.
,
Ghafourian
,
A.
, and
Darbandi
,
M.
,
2011
, “
Numerical Study of Syngas Premixed Flame Structure and Extinction
,”
Proc. Combust. Inst.
, Tehran, Iran. Available at:http://www.combustion-institute.it/proceedings/MCS-7/papers/RKC/RKC-15.pdf
25.
Bouvet
,
N.
,
Chauveau
,
C.
,
Gokalp
,
I.
, and
Halter
,
F.
,
2011
, “
Experimental Studies of the Fundamental Flame Speeds of Syngas (H2/CO)/Air Mixtures
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
913
920
.10.1016/j.proci.2010.05.088
26.
McLean
,
I.
,
Smith
,
D.
, and
Taylor
,
S.
,
1994
, “
The Use of Carbon Monoxide/Hydrogen Burning Velocities to Examine the Rate of the CO Reaction
,”
Symp. (Int.) Combust.
,
25
(
1
), pp.
749
757
.10.1016/S0082-0784(06)80707-1
27.
Sung
,
C.
, and
Law
,
C.
,
2008
, “
Fundamental Combustion Properties of H2/CO Mixtures: Ignition and Flame Propagation at Elevated Pressures
,”
Combust. Sci. Technol.
,
180
(
6
), pp.
1097
1116
.10.1080/00102200801963169
28.
Bouvet
,
N.
,
Lee
,
S.-Y.
,
Gokalp
,
I.
, and
Santoro
,
R.
,
2007
, “
Flame Speed Characteristics of Syngas (H2–CO) With Straight Burners for Laminar Premixed Flames
,”
Third European Combustion Meeting
, pp. 1–6.
29.
Yepes
,
H.
, and
Amell
,
A.
,
2013
, “
Laminar Burning Velocity With Oxygen-Enriched Air of Syngas Produced From Biomass Gasification
,”
Int. J. Hydrogen Energy
,
38
(
18
), pp.
7519
7527
.10.1016/j.ijhydene.2013.03.148
30.
Natarajan
,
J.
,
Lieuwen
,
T.
, and
Seitzman
,
J.
,
2007
, “
Laminar Flame Speeds of H2/CO Mixtures: Effect of {CO2} Dilution, Preheat Temperature, and Pressure
,”
Combust. Flame
,
151
(
1–2
), pp.
104
119
.10.1016/j.combustflame.2007.05.003
31.
Monteiro
,
E.
, and
Rouboa
,
A.
,
2011
, “
Measurements of the Laminar Burning Velocities for Typical Syngas–Air Mixtures at Elevated Pressures
,”
ASME J. Energy Resour. Technol.
,
133
(
3
), p.
031002
.10.1115/1.4004607
32.
Fu
,
J.
,
Tang
,
C.
,
Jin
,
W.
,
Thi
,
L.
,
Huang
,
Z.
, and
Zhang
,
Y.
,
2013
, “
Study on Laminar Flame Speed and Flame Structure of Syngas With Varied Compositions Using OH-PLIF and Spectrograph
,”
Int. J. Hydrogen Energy
,
38
(
3
), pp.
1636
1643
.10.1016/j.ijhydene.2012.11.023
33.
Sanusi
,
Y.
,
Habib
,
M.
, and
Mokheimer
,
E.
,
2014
, “
Experimental Study on the Effect of Hydrogen Enrichment of Methane on the Stability and Emission of Nonpremixed Swirl Stabilized Combustor
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032203
.10.1115/1.4028699
34.
Iyer
,
V.
,
Haynes
,
J.
,
May
,
P.
, and
Anand
,
A.
,
2005
, “
Evaluation of Emissions Performance of Existing Combustion Technologies for Syngas Combustion
,” Vol.
2
,
International Gas Turbine Institute
,
ASME
Paper No. GT2005-68513, pp. 353–365.10.1115/GT2005-68513
35.
Chun
,
K.
,
Chung
,
H.-J.
,
Chung
,
S.
, and
Choi
,
J.
,
2011
, “
A Numerical Study on Extinction and NOx Formation in Nonpremixed Flames With Syngas Fuel
,”
J. Mech. Sci. Technol.
,
25
(
11
), pp.
2943
2949
.10.1007/s12206-011-0810-4
36.
Giles
,
D.
,
Som
,
S.
, and
Aggarwal
,
S.
,
2006
, “
NOx Emission Characteristics of Counterflow Syngas Diffusion Flames With Airstream Dilution
,”
Fuel
,
85
(
12–13
), pp.
1729
1742
.10.1016/j.fuel.2006.01.027
37.
Ding
,
N.
,
Arora
,
R.
,
Norconk
,
M.
, and
Lee
,
S.-Y.
,
2011
, “
Numerical Investigation of Diluent Influence on Flame Extinction Limits and Emission Characteristic of Lean-Premixed H2–CO (Syngas) Flames
,”
Int. J. Hydrogen Energy
,
36
(
4
), pp.
3222
3231
.10.1016/j.ijhydene.2010.11.097
38.
Rortveit
,
G.
,
Hustad
,
J.
,
Li
,
S.-C.
, and
Williams
,
F.
,
2002
, “
Effects of Diluents on NOx Formation in Hydrogen Counterflow Flames
,”
Combust. Flame
,
130
(
1–2
), pp.
48
61
.10.1016/S0010-2180(02)00362-0
39.
Release, 3.6, 2000, Premix: A Program for Modeling Steady, Laminar, One-Dimensional Premixed Flames.
40.
Law
,
C.
, and
Sung
,
C.
,
2000
, “
Structure, Aerodynamics, and Geometry of Premixed Flamelets
,”
Prog. Energy Combust. Sci.
,
26
(
4–6
), pp.
459
505
.10.1016/S0360-1285(00)00018-6
41.
Turns
,
S.
,
1996
,
An Introduction to Combustion: Concepts and Applications
, Second ed.,
McGraw-Hill
,
New York
.
42.
Goodwin
,
D.
,
2009
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” https://code.google.com/p/cantera/
43.
Bunkute
,
B.
, and
Moss
,
J.
,
2007
, “
Laminar Burning Velocities of Carbon Monoxide/Hydrogen–Air Mixtures at High Temperatures and Pressures
,”
Third European Combustion Meeting
. Available at: http://combustion.org.uk/ECM_2007/ecm2007_papers/6-1.pdf
44.
Hassan
,
M.
,
Aung
,
K.
, and
Faeth
,
G.
,
1997
, “
Properties of Laminar Premixed CO/H2/Air Flames at Various Pressures
,”
J. Propul. Power
,
13
(
2
), pp.
239
245
.10.2514/2.5154
45.
Burke
,
M.
,
Qin
,
X.
,
Ju
,
Y.
, and
Dryer
,
F.
,
2007
, “
Measurements of Hydrogen Syngas Flame Speeds at Elevated Pressures
,”
The 5th U.S. Combustion Meeting
, March 25–28, 2007, Vol.
25
. Available at: http://www.princeton.edu/~combust/meetings/JSSCI%20UCSD/Burke_et_al_5th_JMUSSCI_paper_A16.pdf
46.
Lee
,
H.
,
Jiang
,
L.
, and
Mohamad
,
A.
,
2014
, “
A Review on the Laminar Flame Speed and Ignition Delay Time of Syngas Mixtures
,”
Int. J. Hydrogen Energy
,
39
(
2
), pp.
1105
1121
.10.1016/j.ijhydene.2013.10.068
You do not currently have access to this content.