A fluidized bed reactor has been developed which uses a two-step thermochemical water splitting process with a peak hydrogen production rate of 47 Ncm3/min.gFe at an oxidation temperature of 850 °C. Of particular interest, is that a mixture of iron and zirconia powder is fluidized during the oxidation reaction using a steam mass flux of 58 g/min-cm2. The zirconia powder serves to virtually eliminate iron powder sintering while maintaining a high reaction rate. The iron/zirconia powder is mixed in a ratio of 1:2 by apparent volume and has a mass ratio of 1:1. Both iron and zirconia particles are sieved to sizes ranging from 125 μm to 355 μm. The efficacy of zirconia as a sintering inhibitor was found to be dependent on the iron and zirconia mean particle size, particle size distribution and iron/zirconia apparent volume ratio. At 650 °C, the oxidation of iron powder with a mean particle size of 100 μm and a wide particle size distribution (40–250 μm) mixed with 44 μm zirconia powder with an iron/zirconia apparent volume ratio of 1:1 results in 75–90% sintering. In all cases, when iron is mixed with zirconia, the hydrogen production rate is not affected when compared with the pure iron case assuming an equivalent mass of iron is in the mixture. When iron powder is mixed with zirconia, both with a narrow particle size distribution (125–355 μm), the first oxidation step results in 3–7% sintering when the reactions are carried out at temperatures ranging between 840 and 895 °C. The hydrogen fractional yield is high (94–97%). For subsequent redox reactions, the macroscopic sintering is totally eliminated at 867 and 895 °C, although the hydrogen fractional yield decreases to 27 and 33%, respectively. It is demonstrated that mixing iron with zirconia in an equivalent mass ratio and similar particle size range can eliminate macroscopic sintering in a fluidized bed reactor at elevated temperatures up to 895 °C.

References

1.
Lubis
,
L. L.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2010
, “
Life Cycle Assessment of Hydrogen Production Using Nuclear Energy: An Application Based on Thermochemical Water Splitting
,”
ASME J. Energy Resour. Technol.
,
132
, p.
021004
.10.1115/1.4001603
2.
Aceves
,
S. M.
, and
Berry
,
G.
,
2005
, “
The Case for Hydrogen in a Carbon Constrained World
,”
ASME J. Energy Resour. Technol.
,
127
, pp.
89
94
.10.1115/1.1924566
3.
Shahid
,
M.
,
Bidin
,
N.
,
Mat
,
Y.
, and
Inayatullah
,
M.
,
2012
, “
Production and Enhancement of Hydrogen From Water: A Review
,”
ASME J. Energy Resour. Technol.
,
134
, p.
034002
.10.1115/1.4006432
4.
Funk
,
J.
,
1976
, “
Thermochemical Process for the Production of Hydrogen From Water
,” NASA-Lewis, Technical Report Grant No NGR 18-001-086.
5.
Nakamura
,
T.
,
1976
, “
Hydrogen Production From Water Utilizing Solar Heat at High Temperatures
,”
Sol. Energy
,
19
, pp.
467
475
.10.1016/0038-092X(77)90102-5
6.
Hong
,
H.
,
Liu
,
Q.
, and
Jin
,
H.
,
2009
, “
Solar Hydrogen Production Integrating Low-Grade Solar Thermal Energy and Methanol Steam Reforming
,”
ASME J. Energy Resour. Technol.
,
131
, p.
012601
.10.1115/1.3068336
7.
Funk
,
J.
, and
Reinstrom
,
R.
,
1966
, “
Energy Requirements in the Production of Hydrogen Water
,”
I&EC Process Des. Dev.
,
5
, pp.
336
342
.10.1021/i260019a025
8.
Vishnevetsky
,
I.
,
Berman
,
A.
, and
Epstein
,
M.
,
2011
, “
Features of Solar Thermochemical Redox Cycles for Hydrogen Production From Water as a Function of Reactants' Main Characteristics
,”
Int. J. Hydrogen Energy
,
36
, pp.
2817
2830
.10.1016/j.ijhydene.2010.11.027
9.
Charvin
,
P.
,
Abanades
,
S.
,
Flamant
,
G.
, and
Lemort
,
F.
,
2007
, “
Two-Step Water Splitting Thermochemical Cycle Based on Iron Oxide Redox Pair for Solar Hydrogen Production
,”
Energy
,
32
, pp.
1124
1133
.10.1016/j.energy.2006.07.023
10.
Steinfeld
,
A.
,
Sanders
,
S.
, and
Plumbo
,
R.
,
1999
, “
Design Aspects of Solar Thermochemical Engineering—A Case Study: Two-Step Water Splitting Cycle Using the Fe3O4/FeO Redox System
,”
Sol. Energy
,
65
, pp.
43
53
.10.1016/S0038-092X(98)00092-9
11.
Aoki
,
H.
,
Kaneko
,
H.
,
Hasegawa
,
N.
,
Ishihara
,
H.
,
Suzuki
,
A.
, and
Tamaura
,
Y.
,
2004
, “
The ZnFe2O4/(ZnO+Fe3O4) System for H2 Production Using Concentrated Solar Energy
,”
Solid State Ionics
,
192
, pp.
113
116
.10.1016/j.ssi.2004.04.030
12.
Steinfeld
,
A.
,
2002
, “
Solar Hydrogen Production via a Two-Step Water Splitting Thermochemical Cycle Based on Zn/Zno Redox Reaction
,”
Int. J. Hydrogen Energy
,
27
, pp.
611
619
.10.1016/S0360-3199(01)00177-X
13.
Kodama
,
T.
,
Kondoh
,
Y.
,
Yamamoto
,
R.
,
Andou
,
H.
, and
Satou
,
N.
,
2005
, “
Thermochemical Hydrogen-Production by a Redox System of ZrO2-Supported Co(II)-Ferrite
,”
Sol. Energy
,
78
, pp.
623
631
.10.1016/j.solener.2004.04.008
14.
Ehrensberger
,
K.
,
Frei
,
A.
,
Kuhn
,
P.
,
Oswald
,
H. R.
, and
Hug
,
P.
,
1995
, “
Comparative Experimental Investigations of the Water Splitting Reaction With Iron Oxide Fe1-yO and Iron Manganese Oxide (Fe1-xMnx)1-yO
,”
Solid State Ionics
,
78
, pp.
151
160
.10.1016/0167-2738(95)00019-3
15.
Abanades
,
S.
,
Legal
,
A.
,
Cordier
,
A.
,
Peraudeau
,
G.
,
Flamant
,
G.
, and
Julbe
,
A.
,
2010
, “
Investigation of Reactive Cerium-Based Oxides for H2 Production by Thermochemical Two-Step Water-Splitting
,”
J. Mater. Sci.
,
45
, pp.
4163
4173
.10.1007/s10853-010-4506-4
16.
Singh
,
A.
,
Al-Raqom
,
F.
,
Klausner
,
J.
, and
Petrasch
,
J.
,
2011
, “
Hydrogen Production via the Iron/Iron Oxide Looping Cycle
,”
Proceedings of ASME 2011 5th International Conference on Energy Sustainability and 9th Fuel Cell Science, Engineering and Technology Conference ESFuelCell
,
Washington, DC
, Aug. 7–10.
17.
Kunii
,
D.
, and
Levenspiel
,
O.
,
1968
,
Fluidization Engineering
,
Wiley
,
New York
.
18.
Clavenna
,
R.
,
Davis
,
S. M.
,
Fiato
,
R. A.
, and
Say
,
G. R.
,
1995
, “
Particulate Solids for Catalyst Supports and Heat Transfer Materials
,” U.S. Patent No. 5,476,877.
19.
Reddy
,
K.
,
Kannan
,
P.
,
Al Shoaibi
,
A.
, and
Srinivasakannan
,
C.
,
2012
, “
Thermal Pyrolysis of Polyethelene in Fluidized Beds: Review of the Influence on Product Distribution
,”
ASME J. Energy Resour. Technol.
,
134
, p.
034001
.10.1115/1.4006790
20.
Al-Raqom
,
F.
,
Klausner
,
J. F.
,
Hahn
,
D.
,
Petrsach
,
J.
, and
Sherif
,
S. A.
,
2011
, “
High Temperature Fluidized Bed Reactor Kinetics With Sintering Inhibitors for Iron Oxidation
,”
Proceedings of ASME 2011 International Mechanical Engineering Congress and Exposition (IMCE)
,
Denver, CO
, Nov. 11–17.
21.
Gokon
,
N.
,
Mizuno
,
T.
,
Nakamuro
,
Y.
, and
Kodama
,
T.
,
2008
,“
Iron-Containing Yttria-Stabilized Zirconia System for Two-Step Thermochemical Water Splitting
,”
ASME J. Solar Energy Eng.
,
130
, p.
011018
.10.1115/1.2807197
22.
Urasaki
,
K.
,
Sekine
,
Y.
,
Tanimoto
,
N.
,
Tamura
,
E.
,
Kikuchi
,
E.
, and
Matsukata
,
M.
,
2005
,
Effect of a Small Amount of Zirconia Additive on the Activity and Stability of Iron Oxide During Repeated Redox Cycles
,”
Chem. Lett.
,
34
(
2
), pp.
230
231
.10.1246/cl.2005.230
23.
“T Type Process Air Heater Manual
,” Omega Engineering Inc., Last accessed Feb. 8, 2012, http://www.omega.com/Heaters/pdf/AHP_SERIES.pdf
24.
“Ancor MH-100 Specification Sheet
,” Hoeganaes Corporation, Last accessed: Feb. 8, 2012, http://www.hoeganaes.com/Product%20Datasheets/DataSheets%20Jan2001/ANCOR%20MH-100-1.pdf
25.
“Product Data Sheet
,” Z-TECH, Last accessed: Feb. 8, 2012, http://www.z-techzirconia.com/pdf/product_data_sheets/CF-Extra.pdf
26.
German
,
R.
,
1996
,
Sintering Theory and Practice
,
John Wiley & Sons
,
New York
.
You do not currently have access to this content.