Dual fuel pilot-ignited natural gas engines are identified as an efficient and viable alternative to conventional diesel engines. This paper examines cyclic combustion fluctuations in conventional dual fuel and in dual fuel partially premixed combustion (PPC). Conventional dual fueling with 95% (energy basis) natural gas (NG) substitution reduces NOx emissions by almost 90% relative to neat diesel operation; however, this is accompanied by 98% increase in HC emissions, 10 percentage points reduction in fuel conversion efficiency (FCE) and 12 percentage points increase in COVimep. Dual fuel PPC is achieved by appropriately timed injection of a small amount of diesel fuel (2–3% on an energy basis) to ignite a premixed natural gas–air mixture to attain very low NOx emissions (less than 0.2 g/kWh). Cyclic variations in both combustion modes were analyzed by observing the cyclic fluctuations in start of combustion (SOC), peak cylinder pressures (Pmax), combustion phasing (Ca50), and the separation between the diesel injection event and Ca50 (termed “relative combustion phasing”). For conventional dual fueling, as NG substitution increases, Pmax decreases, SOC and Ca50 are delayed, and cyclic variations increase. For dual fuel PPC, as diesel injection timing is advanced from 20 deg to 60 deg BTDC, Pmax is observed to increase and reach a maximum at 40 deg BTDC and then decrease with further pilot injection advance to 60 deg BTDC, the Ca50 is progressively phased closer to TDC with injection advance from 20 deg to 40 deg BTDC, and is then retarded away from TDC with further injection advance to 60 deg BTDC. For both combustion modes, cyclic variations were characterized by alternating slow and fast burn cycles, especially at high NG substitutions and advanced injection timings. Finally, heat release return maps were analyzed to demonstrate thermal management strategies as an effective tool to mitigate cyclic combustion variations, especially in dual fuel PPC.

References

1.
Karim
,
G. A.
,
1987
, “
The Dual Fuel Engine
,”
Automotive Engine Alternatives
,
R. L.
Evans
, ed.,
Plenum
,
New York
.
2.
Gao
,
T.
,
Divekar
,
P.
,
Asad
,
U.
,
Han
,
X.
,
Reader
,
G. T.
,
Wang
,
M.
,
Zheng
,
M.
, and
Tjong
,
J.
,
2013
, “
An Enabling Study of Low Temperature Combustion With Ethanol in a Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
042203
.10.1115/1.4024027
3.
Soloiu
,
V.
,
Duggan
,
M.
,
Ochieng
,
H.
,
Williams
,
D.
,
Molina
,
G.
, and
Vlcek
,
B.
,
2013
, “
Investigation of Low Temperature Combustion Regimes of Biodiesel With n-Butanol Injected in the Intake Manifold of a Compression Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
041101
.10.1115/1.4023743
4.
Gibson
,
C. M.
,
Polk
,
A. C.
,
Shoemaker
,
N. T.
,
Srinivasan
,
K. K.
, and
Krishnan
,
S. R.
,
2011
,
Comparison of Propane and Methane Performance and Emissions in a Turbocharged Direct Injection Dual Fuel Engine
,
ASME J. Eng. Gas Turbines Power
,
133
(
9
), p.
092806
.10.1115/1.4002895
5.
Krishnan
,
S. R.
,
Biruduganti
,
M.
,
Mo
,
Y.
,
Bell
,
S. R.
, and
Midkiff
,
K. C.
,
2002
, “
Performance and Heat Release Analysis of a Pilot-Ignited Natural Gas Engine
,”
Int. J. Engine Res.
,
3
(
3
), pp.
171
184
.10.1243/14680870260189280
6.
Polk
,
A. C.
,
Gibson
,
C. M.
,
Shoemaker
,
N. T.
,
Srinivasan
,
K. K.
, and
Krishnan
,
S. R.
,
2013
, “
Analysis of Ignition Behavior in a Turbocharged Direct Injection Dual Fuel Engine Using Propane and Methane as Primary Fuels
,”
ASME J. Energy Resour. Technol.
,
135
, p.
032202
.10.1115/1.4023482
7.
Papagiannakis
,
R. G.
, and
Hountalas
,
D. T.
,
2003
, “
Experimental Investigation of Natural Gas Percentage on Performance and Emissions of a D.I. Dual Fuel Engine
,”
Appl. Therm. Eng.
,
23
, pp.
353
365
.10.1016/S1359-4311(02)00187-4
8.
Karim
,
G. A.
,
2003
, “
Combustion in Gas Fueled Compression: Ignition Engines of the Dual Fuel Type
,”
ASME J. Eng. Gas Turbines Power
,
125
, pp.
827
836
.10.1115/1.1581894
9.
Bose
,
P. K.
, and
Banerjee
,
R.
,
2012
, “
An Experimental Investigation on the Role of Hydrogen in the Emission Reduction and Performance Trade-Off Studies in an Existing Diesel Engine Operating in Dual Fuel Mode Under Exhaust Gas Recirculation
,”
ASME J. Energy Resour. Technol.
,
134
(
1
), p.
012601
.10.1115/1.4005246
10.
Gebert
,
K.
,
Beck
,
N. J.
,
Barkhimer
,
R. L.
, and
Wong
,
H. C.
,
1997
, “
Strategies to Improve Combustion and Emission Characteristics of Dual-Fuel Pilot Ignited Natural Gas Engines
,” SAE Paper No. 971712.
11.
Krishnan
,
S. R.
,
Srinivasan
,
K. K.
,
Singh
,
S.
,
Bell
,
S. R.
,
Midkiff
,
K. C.
,
Gong
,
W.
,
Fiveland
,
S. B.
, and
Willi
,
M.
,
2004
, “
Strategies for Reduced NOx Emissions in Pilot-Ignited Natural Gas Engines
,”
ASME J. Eng. Gas Turbines Power
,
126
(
3
), pp.
665
671
.10.1115/1.1760530
12.
Srinivasan
,
K. K.
,
Krishnan
,
S. R.
,
Singh
,
S.
,
Midkiff
,
K. C.
,
Bell
,
S. R.
,
Gong
,
W.
,
Fiveland
,
S. B.
, and
Willi
,
M.
,
2006
, “
The Advanced Low Pilot Ignited Natural Gas Engine—A Combustion Analysis
,”
ASME J. Eng. Gas Turbines Power
,
128
(
1
), pp.
213
218
.10.1115/1.1915428
13.
Srinivasan
,
K. K.
,
Mago
,
P. J.
,
Zdaniuk
,
G. J.
,
Chamra
,
L. M.
, and
Midkiff
,
K. C.
,
2008
, “
Improving the Efficiency of the Advanced Injection Low Pilot Ignited Natural Gas Engine Using Organic Rankine Cycles
,”
ASME J. Energy Resour. Technol.
,
130
(
2
), p.
022201
.10.1115/1.2906123
14.
Splitter
,
D.
,
Hanson
,
R.
,
Kokjohn
,
S.
, and
Reitz
,
R.
,
2010
, “
Reactivity Controlled Compression Ignition (RCCI) Heavy-Duty Engine Operation at Mid-and High-Loads With Conventional and Alternative Fuels
,” SAE Paper No. 2011-01-0363.
15.
Eichmeier
,
J.
,
Wagner
,
U.
, and
Spicher
,
U.
,
2011
, “
Controlling Gasoline Low Temperature Combustion by Diesel Micropilot Injection
,”
Proceedings of the Fall Technical Meeting of the ASME IC Engines Division
,
Morgantown, WV
, Oct. 2–4, Paper No. ICEF2011-60042.
16.
Dec
,
J.
,
1997
, “
A Conceptual Model of DI Diesel Combustion Based on Laser-Sheet Imaging
,” SAE Paper No. 970873.
17.
Matekunas
,
F.
,
1983
, “
Modes and Measures of Cyclic Combustion Variability
,” SAE Paper No. 830337.
18.
Egolfopoulos
,
F. N.
,
Holley
,
A. T.
, and
Law
,
C. K.
,
2007
, “
An Assessment of the Lean Flammability Limits of CH4/Air and C3H8/Air Mixtures at Engine-Like Conditions
,”
Proc. Combust. Inst.
,
31
, pp.
3015
3022
.10.1016/j.proci.2006.08.018
19.
Daw
,
C. S.
,
Kennel
,
M. B.
,
Finney
,
C. E. A.
, and
Connolly
,
F. T.
,
1998
, “
Observing and Modeling Nonlinear Dynamics in an Internal Combustion Engine
,”
Phys. Rev. E
,
57
(
3
), pp.
2813
2819
.10.1103/PhysRevE.57.2811
20.
Wagner
,
R. M.
,
Daw
,
C. S.
, and
Green
,
J. B.
, Jr.
,
2001
, “
Low-Order Map Approximations of Lean Cyclic Dispersion in Premixed Spark Ignition Engines
,” SAE Paper No. 2001-01-3559.
21.
Edwards
,
D. K.
, and
Wagner
,
R. B.
,
2004
, “
Application of Adaptive Control to Reduce Cyclic Dispersion near the Lean Limit in a Small-Scale, Natural Gas Engine
,”
Proceedings of the ASME IC Engines Division Fall Technical Conference
,
Longbeach, CA
, October 24–27, Paper No. ICEF2004-855.
22.
Green
,
J. B.
, Jr.
,
Daw
,
C. S.
,
Armfield
,
J. S.
,
Finney
,
C. E. A.
,
Wagner
,
R. M.
,
Drallmeier
,
J. A.
,
Kennel
,
M. B.
, and
Durbetaki
,
P.
,
1999
, “
Time Irreversibility and Comparison of Cyclic-Variability Models
,” SAE Paper No. 1999-0100221.
23.
Martin
,
J. K.
,
Plee
,
S. L.
, and
Remboski
,
D. J.
, Jr.
,
1988
, “
Burn Modes and Prior-Cycle Effects on Cyclic Variations in Lean-Burn Spark-Ignition Combustion
,” SAE Paper No. 880201.
24.
Srinivasan
,
K. K.
,
Krishnan
,
S. R.
, and
Midkiff
,
K. C.
,
2006
, “
Improving Low Load Combustion, Stability and Emissions in Pilot-Ignited Natural Gas Engines
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
,
220
(
2
), pp.
229
239
.10.1243/09544070JAUTO104
25.
Srinivasan
,
K. K.
,
Krishnan
,
S. R.
,
Qi
,
Y.
,
Yang
,
H.
, and
Midkiff
,
K. C.
,
2007
, “
Analysis of Diesel Pilot-Ignited Natural Gas Low-Temperature Combustion With Hot Exhaust Gas Recirculation
,”
Combust. Sci. Technol.
,
179
(
9
), pp.
1737
1776
.10.1080/00102200701259882
You do not currently have access to this content.