Performance prediction of thermoelectric generators (TEG) is an important work in thermoelectrics and a physical model is quite necessary. Now basic thermoelectric phenomena have been expounded explicitly, modeling a TEG is an accessible work. However, the Thomson heat (which is a second-order effect) is usually neglected in device-level TEG analyses. And the dealing with the output power expression without Thomson heat is improper in some studies. Based on a thermoelectric model which considers basic thermoelectric effects, as well as the thermal resistances between the thermocouple and the heat source, heat sink, reasonable expressions of Thomson coefficient and Seebeck coefficient are proposed. The output power expression without Thomson heat is analyzed and redressed. With and without Thomson heat, the output power and energy efficiency are calculated at different thermal conditions. Some new results distinct from the past ones are presented. At last, in order to testify the physical model, a BiTe-based thermoelectric module is tested and an ANSYS model is built.

References

1.
DiSalvo
,
F. J.
,
1999
, “
Thermoelectric Cooling and Power Generation
,”
Science
,
285
, p.
703
.10.1126/science.285.5428.703
2.
Jang
,
B.
,
Han
,
S.
, and
Kim
,
J. Y.
,
2011
, “
Optimal Design for Micro-Thermoelectric Generators Using Finite Element Analysis
,”
Microelectron. Eng.
,
88
, pp.
775
778
.10.1016/j.mee.2010.06.025
3.
Rowe
,
D. M.
, and
Gao
,
M.
,
1998
,
Evaluation of Thermoelectric Modules for Power Generation
,”
J. Power Sources
,
73
, pp.
193
198
.10.1016/S0378-7753(97)02801-2
4.
Tatarinov
,
D.
,
Wallig
,
D.
, and
Bastian
,
G.
,
2012
, “
Optimized Characterization of Thermoelectric Generators for Automotive Application
,”
J. Electron. Mater.
,
41
,
1706
1712
.10.1007/s11664-012-2040-7
5.
Deng
,
Y. D.
,
Fa
,
W.
,
Ling
,
K.
, and
Su
,
Q. C.
,
2012
, “
A 42-V Electrical and Hybrid Driving System Based on a Vehicular Waste-Heat Thermoelectric Generator
,”
J. Electron. Mater.
,
41
, pp.
1698
1705
.10.1007/s11664-012-2068-8
6.
Rowe
,
D. M.
, and
Gao
,
M.
,
1992
, “
Optimization of Thermoelectric Module Geometry for Waste Heat Electrical Power Generation
,”
J. Power Sources
,
28
, pp.
253
259
.
7.
Esarte
,
J.
,
Min
,
G.
, and
Rowe
,
D. M.
,
2001
, “
Modelling Heat Exchangers for Thermoelectric Generators
,”
J. Power Sources
,
93
, pp.
72
76
.10.1016/S0378-7753(00)00566-8
8.
Rowe
,
D. M.
,
Gao
,
M.
, and
Zhang
,
J. S.
,
1996
,
Thermoelectric Energy Conversion and Applications
,
Arm Industry Press
,
Beijing
.
9.
Cobble
,
M. H.
, and
Rowe
,
D. M.
,
1995
,
CRC Handbook of Thermoelectrics
,
CRC Press
,
London
.
10.
Glatz
,
W.
,
Muntwyler
,
S.
, and
Hierold
,
C.
,
2006
, “
Optimization and Fabrication of Thick Flexible Polymer Based Micro Thermoelectric Generator
,”
Sens. Actuators, A
,
132
, pp.
337
345
.10.1016/j.sna.2006.04.024
11.
Strasser
,
M.
,
Aigner
,
R.
,
Lauterbach
,
C.
,
Sturm
,
T. F.
,
Franosch
,
M.
, and
Wachutka
,
G.
,
2009
, “
Miniaturized Thermoelectric Generators Based on Poly-Si and Poly-SiGe Surface Micromachining
,”
Sens. Actuators, A
,
114
, pp.
362
370
.10.1016/j.sna.2003.11.039
12.
Freunek
,
M.
,
Müller
,
M.
,
Ungan
,
T.
,
Walker
,
W.
, and
Reindl
,
L. M.
,
2009
, “
New Physical Model for Thermoelectric Generators
,”
J. Electron. Mater.
,
38
, pp.
1214
1220
.10.1007/s11664-009-0665-y
13.
Chen
,
J.
,
Yan
,
Z.
, and
Wu
,
L.
,
1996
, “
The influence of Thomson Effect on the Maximum Power Output and Maximum Efficiency of a Thermoelectric Generator
,”
J. Appl. Phys.
,
79
, pp.
8823
8828
.10.1063/1.362507
14.
Jia
,
Z.
,
Chen
,
S.
,
Hu
,
P.
, and
Sun
,
W.
,
2004
, “
Thermodynamic Analysis of Semiconductor Thermoelectric Generator
,”
J. Chin. Univ. Sci. Technol.
34
, pp.
684
687
.
15.
Strasser
,
M.
,
Aigner
,
R.
,
Franosch
,
M.
, and
Wachutka
,
G.
,
2002
, “
Miniaturized Thermoelectric Generators Based on Poly-Si and Poly-SiGe Surface Micromachining
,”
Sens. Actuators, A
,
97–98
, pp.
535
542
.10.1016/S0924-4247(01)00815-9
16.
Chen
,
M.
,
Lu
,
S. S.
, and
Liao
,
B.
,
2005
, “
On the Figure of Merit of Thermoelectric Generators
,”
ASME J. Energy Resour. Technol.
,
127
, pp.
37
41
.10.1115/1.1811120
17.
Angrist
,
S. W.
,
1976
,
Direct Energy Conversion
, 3rd ed.,
Allyn and Bacon
,
Boston, MA
.
18.
Antonova
,
E. E.
, and
Looman
,
D. C.
,
2005
, “
Finite Elements for Thermoelectric Device Analysis in ANSYS
,”
Proceedings of the 24th International Conference on Thermoelectrics
, p.
200
.
You do not currently have access to this content.