The concept of cofiring (algal biomass burned together with coal or natural gas in existing utility power boilers) includes the utilization of CO2 from power plant for algal biomass culture and oxycombustion of using oxygen generated by biomass to enhance the combustion efficiency. As it reduces CO2 emission by recycling it and uses less fossil fuel, there are concomitant benefits of reduced greenhouse gas (GHG) emissions. The by-products (oxygen) of microalgal biomass can be mixed with air or recycled flue gas prior to combustion, which will have the benefits of lower nitrogen oxide concentration in flue gas, higher efficiency of combustion, and not too high temperature (avoided by available construction materials) resulting from coal combustion in pure oxygen. A technoeconomic analysis of microalgae cofiring process for fossil fuel-fired power plants is studied. A process with closed photobioreactor and artificial illumination is evaluated for microalgae cultivation, due to its simplicity with less influence from climate variations. The results from this process would contribute to further estimation of process performance and investment. Two case studies show that there are average savings about $0.264 million/MW/yr and $0.203 million/MW/yr for coal-fired and natural gas-fired power plants, respectively. These cost savings are economically attractive and demonstrate the promise of microalgae technology for reducing GHG emission from fossil fuel-fired power plants.

1.
IPCC
, 2007,
Climate Change 2007: Synthesis Report—Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
,
B.
Metz
,
O.
Davidson
,
P.
Bosch
,
R.
Dave
, and
L.
Meyer
, eds.,
Cambridge University Press
,
Cambridge
.
2.
Uddin
,
M.
,
Coombe
,
D.
, and
Wright
,
F.
, 2008, “
Modeling of CO2-Hydrate Formation in Geological Reservoirs by Injection of CO2 Gas
,”
ASME J. Energy Resour. Technol.
0195-0738,
130
(
3
), p.
032502
.
3.
Energy Information Administration
, 2008, “
Emissions of Greenhouse Gases in the United States 2007
.”
4.
Figueroa
,
J. D.
,
Fout
,
T.
,
Plasynski
,
S.
,
Mcllvried
,
H.
, and
Srivastava
,
R. D.
, 2008, “
Advances in CO2 Capture Technology—The U.S. Department of Energy’s Carbon Sequestration Program
,”
Int. J. Greenh. Gas Control
,
2
(
1
), pp.
9
20
.
5.
Zeiler
,
K. G.
,
Heacox
,
D. A.
,
Toon
,
S. T.
,
Kadan
,
K. L.
, and
Brown
,
L. M.
, 1995, “
The Use of Microalgae for Assimilation and Utilization of Carbon Dioxide From Fossil Fuel-Fired Power Plant Flue Gas
,”
Energy Convers. Manage.
0196-8904,
36
(
6–9
), pp.
707
712
.
6.
Benemann
,
J. R.
, 1997, “
CO2 Mitigation With Microalgae Systems
,”
Energy Convers. Manage.
0196-8904,
38
(
1
), pp.
S475
S479
.
7.
Nakayama
,
S.
,
Noguchi
,
Y.
,
Kiga
,
T.
,
Miyamae
,
S.
,
Maeda
,
U.
,
Kawai
,
M.
,
Tanaka
,
T.
,
Koyata
,
K.
, and
Makino
,
H.
, 1992, “
Pulverized Coal Combustion in O2/CO2 Mixtures on a Power Plant for CO2 Recovery
,”
Energy Convers. Manage.
0196-8904,
33
(
5–8
), pp.
379
386
.
8.
Stepan
,
D. J.
,
Shockey
,
R. E.
,
Mew
,
T. A.
, and
Dorn
,
R.
, 2002,
Carbon Dioxide Sequestering Using Microalgal Systems—Final Report
,
Energy and Environmental Research Center, University of North Dakota
,
National Technical Information Service, U.S. Department of Commerce
.
9.
de Morais
,
M. G.
, and
Costa
,
J. A. V.
, 2007, “
Isolation and Selection of Microalgae From Coal Fired Thermoelectric Power Plant for Biofixation of Carbon Dioxide
,”
Energy Convers. Manage.
0196-8904,
48
(
7
), pp.
2169
2173
.
10.
Kadam
,
K. L.
, 2002, “
Environmental Implications of Power Generation via Coal-Microalgae Cofiring
,”
Energy
0360-5442,
27
(
10
), pp.
905
922
.
12.
Britannica
,
E.
, 2009, “
Photosynthesis
,” www.britannica.comwww.britannica.com.
13.
Hill
,
R.
, and
Bendall
,
F.
, 1960, “
Function of the Two Cytochrome Components in Chloroplasts—A Working Hypothesis
,”
Nature (London)
0028-0836,
186
(
4719
), pp.
136
137
.
15.
Barsanti
,
L.
, and
Gualtieri
,
P.
, 2006,
Algae—Anatomy, Biochemistry, and Biotechnology
,
CRC
,
Boca Raton, FL
/
Taylor & Francis
,
London
.
16.
Miyamoto
,
K.
, ed., 2009, “
Biological Energy Production
,”
Renewable Biological Systems for Alternative Sustainable Energy Production
,
FAO Food and Agriculture Organization of the United Nations
,
Agricultural Consumer Protection
.
18.
Sheehan
,
J.
,
Dunahay
,
T.
,
Benemann
,
J.
, and
Roessler
,
P.
, 1998, “
A Look Back at the U.S. Department of Energy’s Aquatic Species Program—Biodiesel From Algae
,” U.S. D.O.E. Office of Fuels Development, Report No. NREL/TP-580-24190.
19.
Murakami
,
M.
, and
Ikenouchi
,
M.
, 1997, “
The Biological CO2 Fixation and Utilization Project by Rite (2)—Screening and Breeding of Microalgae With High Capability in Fixing CO2
,”
Energy Convers. Manage.
0196-8904,
38
(
1
), pp.
S493
S497
.
20.
Packer
,
M.
, 2009, “
Algal Capture of Carbon Dioxide; Biomass Generation as a Tool for Greenhouse Gas Mitigation With Reference to New Zealand Energy Strategy and Policy
,”
Energy Policy
0301-4215,
37
(
9
), pp.
3428
3437
.
21.
Bosma
,
R.
,
Zessen
,
E. V.
,
Reith
,
J. H.
,
Tramper
,
J.
, and
Wijffels
,
R. H.
, 2007, “
Prediction of Volumetric Productivity of an Outdoor Photobioreactor
,”
Biotechnol. Bioeng.
0006-3592,
97
(
5
), pp.
1108
1120
.
22.
Hu
,
Q.
,
Kurano
,
N.
,
Kawachi
,
M.
,
Iwasaki
,
I.
, and
Miyachi
,
S.
, 1998, “
Ultrahigh-Cell-Density Culture of a Marine Green Alga Chlorococcum Littorale in a Flat-Plate Photobioreactor
,”
Appl. Microbiol. Biotechnol.
0175-7598,
49
, pp.
655
662
.
23.
Heubeck
,
S.
, and
Craggs
,
R.
, 2007, “
Resource Assessment of Algae Biomass for Potential Bioenergy Production in New Zealand
,” Bioenergy Options Program.
24.
Demirbas
,
A.
, 2004, “
Combustion Characteristics of Different Biomass Fuels
,”
Prog. Energy Combust. Sci.
0360-1285,
30
(
2
), pp.
219
230
.
25.
Chisti
,
Y.
, 2008, “
Biodiesel From Microalgae Beats Bioethanol
,”
Trends Biotechnol.
0167-7799,
26
(
3
), pp.
126
131
.
26.
Spolaore
,
P.
,
Joannis
,
C. C.
,
Duran
,
E.
, and
Isambert
,
A.
, 2006, “
Commercial Applications of Microalgae
,”
J. Biosci. Bioeng.
1389-1723,
101
(
2
), pp.
87
96
.
27.
Metting
,
F. B.
, 1996, “
Biodiversity and Application of Microalgae
,”
J. Ind. Microbiol.
0169-4146,
17
, pp.
477
489
.
28.
Demirbas
,
A.
, 1997, “
Calculation of Higher Heating Values of Biomass Fuels
,”
Fuel
0016-2361,
76
(
5
), pp.
431
434
.
29.
Mirón
,
A. S.
,
García
,
M. C. C.
,
Gómez
,
A. C.
,
Camacho
,
F. G.
,
Grima
,
E. M.
, and
Chisti
,
Y.
, 2003, “
Shear Stress Tolerance and Biochemical Characterization of Phaeodactylum Tricornutum in Quasi Steady-State Continuous Culture in Outdoor Photobioreactors
,”
Biochem. Eng. J.
1369-703X,
16
(
3
), pp.
287
297
.
30.
Lardon
,
L.
,
Helias
,
A.
,
Sialve
,
B.
,
Steyer
,
J. P.
, and
Bernard
,
O.
, 2009, “
Life-Cycle Assessment of Biodiesel Production From Microalgae
,”
Environ. Sci. Technol.
0013-936X,
43
(
17
), pp.
6475
6481
.
31.
Clarens
,
A. F.
,
Resurreccion
,
E. P.
,
White
,
M. A.
, and
Colosi
,
L. M.
, 2010, “
Environmental Life Cycle Comparison of Algae to Other Bioenergy Feedstocks
,”
Environ. Sci. Technol.
0013-936X,
44
, pp.
1813
1819
.
37.
Kadam
,
K. L.
, 1997, “
Power Plant Flue Gas as a Source of CO2 for Microalgae Cultivation: Economic Impact of Different Process Options
,”
Energy Convers. Manage.
0196-8904,
38
(
1
), pp.
S505
S510
.
38.
Hong
,
J.
,
Chaudhry
,
G.
,
Brisson
,
J. G.
,
Field
,
R.
,
Gazzino
,
M.
, and
Ghoniem
,
A. F.
, 2009, “
Analysis of Oxy-Fuel Combustion Power Cycle Utilizing a Pressurized Coal Combustor
,”
Energy
0360-5442,
34
(
9
), pp.
1332
1340
.
41.
Department of Energy Environmental Protection Agency
, 2000,
Carbon Dioxide Emissions From the Generation of Electric Power in the United States
,
Department of Energy and Environmental Protection Agency
,
Washington, D.C.
, p.
2
.
You do not currently have access to this content.