This paper presents results for the entropy generated internally during the charging and discharging processes of a direct, sensible thermal energy store. The two processes correspond to the inflow of either a low or high temperature liquid stream into an enclosure initially filled with a uniformly high or low temperature liquid, respectively. The level of internal entropy generation due to thermal mixing between the inflow and the initial liquid volume corresponds to losses in the usable fraction of the stored volume and therefore decreased efficiency. Empirically, the observed behavior of direct sensible storage devices spans the range of nearly mixed to highly stratified. In the present work, analytical models for the fully-mixed and ideally-stratified limits are used to bound these behaviors and to analytically determine the corresponding entropy generation levels. The ratio of total entropy generation for the ideally-stratified limit relative to that of the fully-mixed limit is shown to vary as 8/πPe. The limiting behaviors therefore define a continuum of entropy generation levels separated by up to several orders of magnitude for typical Peclet numbers. A published numerical model which accounts for aspects of the observed thermal mixing is then examined in relation to these limits. The model predicts entropy generation levels midway between the limiting behaviors which suggests significant potential for improvements in the efficiency of direct sensible storage devices.

1.
Beckmann, G., and Gilli, P. V., 1984. Thermal Energy Storage. Springer-Verlag.
2.
Gaggioli
,
R. A.
, 1985, “Second Law Analysis of a Solar Domestic Hot Water Heating System,” Analysis of Energy Systems-Design and Operation, 1, pp. 135–148.
3.
Duffie, J. A., and Beckman, W. A., 1991, Solar Engineering of Thermal Processes, Second Edition. John Wiley and Sons, Inc., New York.
4.
Eames
,
P. C.
, and
Norton
,
B.
,
1998
, “
The Effect of Tank Geometry on Thermally Stratified Sensible Heat Storage Subject to Low Reynolds Number Flows
,”
Int. J. Heat Mass Transfer
,
41
, pp.
2131
2142
.
5.
Lightstone
,
M. F.
,
Raithby
,
G. D.
, and
Hollands
,
K. G. T.
,
1989
, “
Numerical Simulation of the Charging of Liquid Storage Tanks: Comparison with Experiment
,”
ASME J. Sol. Energy Eng.
,
111
, pp.
225
231
.
6.
Clark, J. A., 1985, “Thermal Energy Storage,” Handbook of Heat Transfer Applications, W. M. Rohsenow, J. P. Hartnett, and E. N. Ganic’, eds. (pp. 8.1–8.40).
7.
Homan
,
K. O.
,
Sohn
,
C. W.
, and
Soo
,
S. L.
,
1996
, “
Thermal Performance of Stratified Chilled Water Storage Tanks
,”
Int. J. HVAC&R Research
,
2
, pp.
158
170
.
8.
Baines
,
W. D.
,
Martin
,
W. W.
, and
Sinclair
,
L. A.
,
1982
, “
On the Design of Stratified Thermal Storage Tanks
,”
ASHRAE Trans.
,
88
, pp.
426
439
.
9.
Cai
,
L.
,
Stewart
, Jr.,
W. E.
, and
Sohn
,
C. W.
,
1993
, “
Turbulent Buoyant Flows into a 2-D Storage Tank
,”
Int. J. Heat Mass Transfer
,
36
, pp.
4247
4256
.
10.
Musser, A., 1998, “Field Measured and Modeled Performance of Full Scale Cylindrical Stratified Chilled Water Storage Tanks,” Ph.D. thesis, Pennsylvania State University.
11.
Spall
,
R. E.
,
1998
, “
A Numerical Study of Transient Mixed Convection in Cylindrical Thermal Storage Tanks
,”
Int. J. Heat Mass Transfer
,
41
, pp.
2003
2011
.
12.
Wildin, M. W., 1984, “Use of Thermally Stratified Water Tanks to Store Cooling Capacity.” Solar Engineering 1984, Proceedings of ASME Solar Energy Division Conference.
13.
Cook
,
R. E.
,
1980
, “
Effects of Stratification in Performance and Control of Residential Electric Water Heaters
,”
ASHRAE Trans.
,
86
, pp.
927
937
.
14.
Fanney
,
A. H.
, and
Dougherty
,
B. P.
,
1996
, “
The Thermal Performance of Residential Electric Water Heaters Subjected to Various Off-peak Schedules
,”
ASME J. Sol. Energy Eng.
,
118
, pp.
73
80
.
15.
Johnson
,
G. A.
, and
Goldschmidt
,
V. W.
,
1983
, “
Standby and Recovery Behavior of a Typical Residential Gas Water Heater
,”
ASHRAE Trans.
,
89
, pp.
61
75
.
16.
Schultz
,
W. W.
, and
Goldschmidt
,
V. W.
,
1981
, “
Energy Performance of a Residential Electric Water Heater
,”
ASHRAE Trans.
,
87
, pp.
310
334
.
17.
Schmidt, F. W., and Willmott, A. J., 1981. Thermal Energy Storage and Regeneration, Hemisphere Publishing Corporation.
18.
Adebiyi
,
G. A.
, and
Chenevert
,
D. J.
,
1996
, “
An Appraisal of One-dimensional Analytical Models for the Packed Bed Thermal Storage Systems Utilizing Sensible Heat Storage Materials
,”
ASME J. Energy Resour. Technol.
,
118
, pp.
44
9
.
19.
Chen
,
S. L.
,
1992
, “
One-dimensional Analysis of Energy Storage in Packed Capsules
,”
ASME J. Sol. Energy Eng.
,
114
, pp.
127
30
.
20.
Howse
,
J. W.
,
Hansen
,
G. A.
,
Cagliostro
,
D. J.
, and
Muske
,
K. R.
,
2000
, “
Solving a Thermal Regenerator Model Using Implicit Newton-Krylov Methods
,”
Numer. Heat Transfer, Part A
,
38
, pp.
23
44
.
21.
Liu
,
W.
,
Davidson
,
J. H.
, and
Mantell
,
S. C.
,
2000
, “
Thermal Analysis for Polymer Heat Exchanger for Solar Water Heating: A Case Study
,”
ASME J. Sol. Energy Eng.
,
122
, pp.
84
91
.
22.
Zollner
,
A.
,
Klein
,
S. A.
, and
Beckman
,
W. A.
,
1985
, “
A Performance Prediction Methodology for Integral Collection-storage Solar Domestic Hot Water Systems
,”
ASME J. Sol. Energy Eng.
,
107
, p.
265
265
.
23.
Dorgan, C. E., and Elleson, J. E., 1994. Design Guide for Cool Thermal Storage. American Society of Heating, Refrigerating, and Air Conditioning Engineers, Inc., Atlanta.
24.
Bejan
,
A.
,
1978
, “
Two Thermodynamic Optima in the Design of Sensible Heat Units for Energy Storage
,”
ASME J. Heat Transfer
,
100
, pp.
708
712
.
25.
Krane
,
R. J.
,
1987
, “
A Second Law Analysis of the Optimum Design and Operation of Thermal Energy Storage Systems
,”
Int. J. Heat Mass Transfer
,
30
, pp.
43
57
.
26.
Moran, M. J., and Keyhani, V., 1982. “Second Law Analysis of Thermal Energy Storage Systems,” Proceedings of the Seventh International Heat Transfer Conference, vol. 6.
27.
Bejan, A., 1996, Entropy Generation Minimization, CRC Press.
28.
Krane
,
R. J.
, and
Krane
,
M. J. M.
,
1992
, “
The Optimum Design of Stratified Thermal Energy Storage Systems-Part I: Development of the Basic Analytical Model
,”
J. Energy Resour.
,
114
, pp.
197
203
.
29.
Krane
,
R. J.
, and
Krane
,
M. J. M.
,
1992
, “
The Optimum Design of Stratified Thermal Energy Storage Systems-Part II: Completion of the Analytical Model, Presentation and Interpretation of the Results
,”
ASME J. Energy Resour. Technol.
,
114
, pp.
204
208
.
30.
Cole
,
R. L.
, and
Bellinger
,
F. O.
,
1982
, “
Thermally Stratified Tanks
,”
ASHRAE Trans.
,
88
, pp.
1005
1017
.
31.
Hollands
,
K. G. T.
, and
Lightstone
,
M. F.
,
1989
, “
A Review of Low-flow, Stratified-tank Solar Water Heating Systems
,”
Solar Energy
,
43
, pp.
97
105
.
32.
Tran
,
N. J.
,
Kreider
,
J. F.
, and
Brothers
,
P.
,
1989
, “
Field Measurement of Chilled Water Storage Thermal Performance
,”
ASHRAE Trans.
,
95
, pp.
1106
1112
.
33.
Musser
,
A.
, and
Bahnfleth
,
W. P.
,
1998
, “
Evolution of Temperature Distributions in a Full-scale Stratified Chilled Water Storage Tank with Radial Diffusers
,”
ASHRAE Trans.
,
104
, pp.
55
67
.
34.
Truman, C. R., and Wildin, M. W., 1989. “Finite Difference Model for Heat Transfer in a Stratified Thermal Storage Tank with Throughflow,” ASME/AIChE Nat. Heat Transfer Conf., 110 of ASME HTD.
35.
Zurigat
,
Y. H.
,
Maloney
,
K. J.
, and
Ghajar
,
A. J.
,
1989
, “
A Comparison Study of One-dimensional Models for Stratified Thermal Storage Tanks
,”
ASME J. Sol. Energy Eng.
,
111
, pp.
204
210
.
36.
Oppel
,
F. J.
,
Ghajar
,
A. J.
, and
Moretti
,
P. M.
,
1986
, “
A Numerical and Experimental Study of Stratified Thermal Storage
,”
ASHRAE Trans.
,
92
, pp.
293
309
.
37.
Gretarsson
,
S. P.
,
Pedersen
,
C. O.
, and
Strand
,
R. K.
,
1994
, “
Development of a Fundamentally Based Stratified Thermal Storage Tank Model for Energy Analysis Calculations
,”
ASHRAE Trans.
,
100
, pp.
1213
1220
.
38.
Homan, K. O., 2000, “Second Law Aspects of Simplified Models for Sensible Thermal Storage,” Proceedings of the ASME Advanced Energy Systems Division, S. Garimella, M. von Spakovsky, and S. Somasundaram, eds., vol. 40.
You do not currently have access to this content.