Dynamic stress behavior during catalytic combustion of methane has been simulated under transient warm-up, cool-down, and cyclic conditions. The numerical model combines a two-dimensional solution to the transport equations, solution of an energy balance on the monolith wall, and the NIKE3D structural analysis code to predict thermal stresses. The model also includes a detailed heterogeneous kinetics model for a proprietary palladium oxide (PdO) catalyst, but the model ignores gas-phase reactions. Results illustrate that thermal stresses as high as 630 MPa can form during transient operating modes, which risks structural failure of the ceramic monolith. The maximum computed thermal stress concentrations occur near the inlet of the monolith. Peak transverse stresses (which act to form axial cracks) typically form near the inlet and centerline of the monolith structure, while peak axial stresses form near the edges of the flat plate that represents the monolith structure. Increasing the preheat temperature of the incoming fuel and air mixture lessens the peak thermal stress. To a first approximation, the magnitude of the peak transverse stress during any transient cycle considered with our model can be estimated from the maximum value of the gradient in the computed temperature profiles.

1.
Aksay
I. A.
,
Dabbs
D. M.
, and
Sarikaya
M.
,
1991
,
Journal of American Ceramics Society
, Vol.
74
, p.
2343
2343
.
2.
Baldwin
T. R.
, and
Burch
R.
,
1990
a,
Applied Catal.
, Vol.
66
, pp.
337
358
.
3.
Baldwin
T. R.
, and
Burch
R.
,
1990
b,
Applied Catal.
Vol.
66
, pp.
359
381
.
4.
Beebe, K. W., Cutrone, M. B., Dalla Betta, R. A., Schlatter, J. C., Nikolas, S., Furuse, Y., and Tsuchiya, T., 1995, Proceedings, Yokohama International Gas Turbine Congress, Gas Turbine Society of Japan.
5.
Boehman
A. L.
,
Simons
J. W.
,
Florence
A. L.
,
Niksa
S.
, and
McCarty
J. G.
,
1997
,
Combustion Science Technology
, Vol.
122
(
1-6
), pp.
257
303
.
6.
Boehman, A. L., 1993, “Catalytic Oxidation of Carbon Monoxide in a Large Scale Planar Isothermal Passage,” Ph.D. thesis, Thermosciences Division, Department of Mechanical Engineering, Stanford University, Stanford, CA.
7.
Bolz, R. E., and Tuve, G. L., 1973, Handbook of Tables for Applied Engineering Science, 2nd Edition, CRC Press, p. 388.
8.
Bruno
C.
,
Walsh
P. M.
,
Santavicca
D. A.
,
Sinha
N.
, and
Yaw
Y.
,
1983
,
Combustion Science Technology
, Vol.
31
, pp.
43
74
.
9.
Crawford, M. E., and Kays, W. M., 1975, “STAN5—A Program for Numerical Computation of Two-Dimensional Internal/External Boundary Layer Flows,” Report No. HMT-23, Thermosciences Division, Mechanical Engineering Department, Stanford University, Stanford, CA.
10.
Fung, Y. C., 1969, A First Course in Continuum Mechanics, Prentice Hall, Engelwood Cliffs, NJ.
11.
Groppi
G.
,
Belloli
A.
,
Tronconi
E.
, and
Forzatti
P.
,
1995
,
AIChE Journal
, Vol.
41
, pp.
2250
2260
.
12.
Groppi
G.
,
Tronconi
E.
, and
Forzatti
P.
,
1993
,
Catal. Today
, Vol.
17
, pp.
237
250
.
13.
Heck
R. H.
,
Wei
J.
, and
Katzer
J. R.
,
1976
,
AIChE Journal
, Vol.
22
, pp.
477
484
.
14.
Kee, R. J., Miller, J. A., and Jefferson, T. H., 1980, “CHEMKIN: A General-Purpose, Problem-Independent, Transportable, Fortran Chemical Kinetics Code Package,” Sandia National Laboratories Report No. SAND80-8003.
15.
Lee
J. H.
, and
Trimm
D. L.
,
1995
,
Fuel Proceedings Technology
, Vol.
42
, pp.
339
359
.
16.
Maker, B. N., Ferencz, R. M., and Hallquist, J. O., 1991, “NIKE3D-A Nonlinear, Implicit, Three-Dimensional Finite Element Code for Solid and Structural Mechanics, User’s Manual,” Lawrence Livermore National Laboratory Report No. UCRL-MA-105268.
17.
Markatou
P.
,
Pfefferle
L. D.
, and
Smooke
M. D.
,
1993
,
Combustion Flame
, Vol.
93
, pp.
185
201
.
18.
McCarty, J. G., Wong, V. L., and Chang, Y.-F., 1993, Western States Section Meeting of the Combustion Institute, Oct.
19.
Pfefferle
W. C.
, and
Pfefferle
L. D.
,
1976
,
Progress in Energy Combustion Science
, Vol.
12
, pp.
25
41
.
20.
Shefer
R. W.
,
1982
,
Comb. Flame
, Vol.
45
, pp.
171
190
.
21.
Siegel, R., and Howell, J. R., 1981, Thermal Radiation Heat Transfer, 2nd Edition, Hemisphere Publishing, p. 248.
22.
Zwinkels
M. F.
,
Ja¨raæs
S. G.
, and
Menon
P. G.
,
1993
,
Catal. Review Science Engineering
, Vol.
35
, pp.
319
358
.
23.
Zygourakis
K.
and
Aris
R.
,
1983
,
Chemical Engineering Science
, Vol.
38
, pp.
733
744
.
This content is only available via PDF.
You do not currently have access to this content.