Abstract

Accelerated testing has been executed to examine the combined influence of electromigration (EM) stressors (elevated current density and elevated ambient temperature) and tensile stress on the lifetime of SAC305 solder joints (300 μm diameter) at two current densities (8500 and 9100 A/cm2), two ambient temperatures (100 and 150 °C), and five tensile stresses (0, 0.5, 1, 2.5, and 5 MPa). 60 total samples were tested, four of which survived the 500-h test duration limit. As tensile stress was increased, a significant reduction in lifetime was observed for each of the four EM conditions (current density–temperature pairs). Voltage drop across the solder samples was measured in situ, capturing the time to failure (TTF) for all samples and allowing for the development of life prediction models based on the multistress experimental scenario. Post failure analysis of the samples tested under combined electromigration and tensile stress showed necking or breakage at the Cu/SAC305 interface on the upstream side of electron flux. The cross-sectional analysis of tested samples is consistent with the findings from other studies regarding electromigration failure in Cu/SAC305/Cu solder joint assemblies, where the intermetallic regions at Cu/SAC305 interfaces grow asymmetrically. Inherent process voids in the experimental samples are discussed as a source of error and a brief computational examination of the impact of process-related voiding on stress as well as current density and self-heating within solder samples is provided.

References

1.
Montazeri
,
M.
,
Vinson
,
W. M.
, and
Huitink
,
D. R.
,
2023
, “
Accelerated Solder Interconnect Testing Under Electromigratory and Mechanical Strain Conditions
,”
ASME J. Electron. Packag.
,
145
(
2
), p.
021002
.10.1115/1.4055024
2.
Zhang
,
P.
,
Xue
,
S.
, and
Wang
,
J.
,
2020
, “
New Challenges of Miniaturization of Electronic Devices: Electromigration and Thermomigration in Lead-Free Solder Joints
,”
Mater. Des.
,
192
, p.
108726
.10.1016/j.matdes.2020.108726
3.
Cheng
,
S.
,
Huang
,
C. M.
, and
Pecht
,
M.
,
2017
, “
A Review of Lead-Free Solders for Electronics Applications
,”
Microelectron. Reliab.
,
75
, pp.
77
95
.10.1016/j.microrel.2017.06.016
4.
Kraus
,
A. D.
, and
Bar-Cohen
,
A.
,
1983
, “
Thermal Analysis and Control of Electronic Equipment
,” McGraw-Hill, New York.
5.
Al Athamneh
,
R.
,
Hani
,
D. B.
,
Hamasha
,
S.
, and
Abueed
,
M.
,
2023
, “
Arrhenius Fatigue Life Modeling for Lead-Free Solder Joints in Accelerated Combined Fatigue and Creep Tests at Different Operating Temperatures
,”
IEEE Trans. Compon. Packag., Manuf. Technol.
,
13
(
3
), pp.
332
345
.10.1109/TCPMT.2023.3256184
6.
Nguyen
,
T. T.
,
Yu
,
D.
, and
Park
,
S. B.
,
2011
, “
Characterizing the Mechanical Properties of Actual SAC105, SAC305, and SAC405 Solder Joints by Digital Image Correlation
,”
J. Electron. Mater.
,
40
(
6
), pp.
1409
1415
.10.1007/s11664-011-1534-z
7.
Hasan
,
S. M. K.
,
Fahim
,
A.
,
Suhling
,
J. C.
,
Hamasha
,
S.
, and
Lall
,
P.
,
2019
, “
Effect of Thermal Cycling on the Mechanical and Microstructural Evolution of SAC305 Lead-Free Solder
,”
ASME
Paper No. IPACK2019-6563.10.1115/IPACK2019-6563
8.
Wu
,
M.
,
Wang
,
S.-L.
,
Yin
,
L.-M.
,
Chen
,
Y.-H.
,
Hong
,
M.
,
Sun
,
W.-J.
,
Yao
,
Z.-X.
, et al.,
2023
, “
Oxidation Behavior and Intermetallic Compound Growth Dynamics of SAC305/Cu Solder Joints Under Rapid Thermal Shock
,”
Trans. Nonferrous Met. Soc. China
,
33
(
10
), pp.
3054
3066
.10.1016/S1003-6326(23)66317-4
9.
Li
,
S.
,
Hang
,
C.
,
Guan
,
Q.
,
Tang
,
X.
,
Yu
,
D.
,
Ding
,
Y.
, and
Wang
,
X.
,
2023
, “
The Microstructure Evolution and Failure Mechanism of Sn37Pb Solder Joints Under the Coupling Effects of Extreme Temperature Variation and Electromigration
,”
Mater. Today Commun.
,
36
, p.
106651
.10.1016/j.mtcomm.2023.106651
10.
Thompson
,
P. B.
,
Johnson
,
R.
, and
Nadimpalli
,
S. P. V.
,
2018
, “
Effect of Temperature on the Fracture Behavior of Cu/SAC305/Cu Solder Joints
,”
Eng. Fract. Mech.
,
199
, pp.
730
738
.10.1016/j.engfracmech.2018.07.004
11.
Kato
,
M.
,
Omori
,
T.
,
Goryu
,
A.
,
Fumikura
,
T.
, and
Hirohata
,
K.
,
2021
, “
Electromigration Analysis of Solder Joints for Power Modules Using an Electrical-Thermal-Stress-Atomic Coupled Model
,”
ASME
Paper No. EP-22-1016.10.1115/EP-22-1016
12.
Kasap
,
S. O.
,
2018
,
Principles of Electronic Materials & Devices
, 4th ed.,
McGraw-Hill Education
,
New York
.
13.
Long
,
T.
,
Chen
,
Y.
,
Fan
,
T.
,
Rong
,
J.
,
Chen
,
T.
, and
Yang
,
D.
,
2023
, “
Microstructure Evolution and Interfacial Reaction of Cu/SAC305/Cu and Co-P/SAC305/Cu Solder Joints Under High Current Density
,”
J. Phys.: Conf. Ser.
,
2419
(
1
), p.
012009
.10.1088/1742-6596/2419/1/012009
14.
Jiang
,
Y.
,
Li
,
H.
,
Chen
,
G.
,
Mei
,
Y.
, and
Wang
,
M.
,
2019
, “
Electromigration Behavior of Cu/Sn3.0Ag0.5Cu/Cu Ball Grid Array Solder Joints
,”
J. Mater. Sci.: Mater. Electron.
,
30
(
6
), pp.
6224
6233
.10.1007/s10854-019-00925-w
15.
Li
,
Y.
,
Fu
,
G.
,
Wan
,
B.
,
Wu
,
Z.
,
Yan
,
X.
, and
Zhang
,
W.
,
2022
, “
A Study on the Effects of Electrical and Thermal Stresses on Void Formation and Migration Lifetime of Sn3.0Ag0.5Cu Solder Joints
,”
Soldering Surf. Mount Technol.
,
34
(
3
), pp.
162
173
.10.1108/SSMT-04-2021-0012
16.
AbdelAziz
,
M.
,
Xu
,
D. E.
,
Wang
,
G.
, and
Mayer
,
M.
,
2021
, “
Electromigration in Solder Joints: A Cross-Sectioned Model System for Real-Time Observation
,”
Microelectron. Reliab.
,
119
, p.
114068
.10.1016/j.microrel.2021.114068
17.
Tiwary
,
N.
,
Ross
,
G.
,
Vuorinen
,
V.
, and
Paulasto-Krockel
,
M.
,
2023
, “
Impact of Inherent Design Limitations for Cu-Sn SLID Microbumps on Its Electromigration Reliability for 3D ICs
,”
IEEE Trans. Electron Devices
,
70
(
1
), pp.
222
229
.10.1109/TED.2022.3224892
18.
Meinshausen
,
L.
,
Frémont
,
H.
, and
Weide-Zaage
,
K.
,
2012
, “
Migration Induced IMC Formation in SAC305 Solder Joints on Cu, NiAu and NiP Metal Layers
,”
Microelectron. Reliab.
,
52
(
9–10
), pp.
1827
1832
.10.1016/j.microrel.2012.06.127
19.
Ourdjini
,
A.
,
Azmah, Hanim
,
M. A.
,
Siti, Rabiatull, Aisha
,
I.
, and
Chin
,
Y. T.
,
2008
, “
Effect of Surface Finish Metallurgy on Intermetallic Compounds During Soldering With Tin-Silver-Copper Solders
,” Proceedings of the IEEE/CPMT International Electronics Manufacturing Technology (
IEMT
) Symposium, Penang, Malaysia, Nov. 4–6, pp.
1
4
.10.1109/IEMT.2008.5507773
20.
Wei
,
X.
,
Hamasha
,
S.
,
Alahmer
,
A.
, and
Belhadi
,
M. E. A.
,
2023
, “
Assessing the SAC305 Solder Joint Fatigue in Ball Grid Array Assembly Using Strain-Controlled and Stress-Controlled Approaches
,”
ASME J. Electron. Packag.
,
145
(
3
), p.
031005
.10.1115/1.4056559
21.
Al Athamneh
,
R.
,
Hani
,
D. B.
,
Ali
,
H.
, and
Hamasha
,
S.
,
2020
, “
Fatigue Life Degradation Modeling of SnAgCu Solder Joints After Aging
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
10
(
7
), pp.
1175
1184
.10.1109/TCPMT.2020.3000355
22.
Marbut
,
C. J.
,
Montazeri
,
M.
, and
Huitink
,
D. R.
,
2018
, “
Rapid Solder Interconnect Fatigue Life Test Methodology for Predicting Thermomechanical Reliability
,”
IEEE Trans. Device Mater. Reliab.
,
18
(
3
), pp.
412
421
.10.1109/TDMR.2018.2851541
23.
Ahmed
,
M. T.
,
Motalab
,
M.
, and
Suhling
,
J. C.
,
2021
, “
Impact of Mechanical Property Degradation and Intermetallic Compound Formation on Electromigration-Oriented Failure of a Flip-Chip Solder Joint
,”
J. Electron. Mater.
,
50
(
1
), pp.
233
248
.10.1007/s11664-020-08514-y
24.
Hu
,
X.
,
He
,
L.
,
Chen
,
H.
,
Lv
,
Y.
,
Gao
,
H.
, and
Liu
,
J.
,
2022
, “
The Effect of Electric-Thermal-Vibration Stress Coupling on the Reliability of Sn-Ag-Cu Solder Joints
,”
J. Electron. Mater.
,
51
(
1
), pp.
284
294
.10.1007/s11664-021-09302-y
25.
An
,
T.
,
Fang
,
C.
,
Qin
,
F.
,
Li
,
H.
,
Tang
,
T.
, and
Chen
,
P.
,
2018
, “
Failure Study of Sn37Pb PBGA Solder Joints Using Temperature Cycling, Random Vibration and Combined Temperature Cycling and Random Vibration Tests
,”
Microelectron. Reliab.
,
91
, pp.
213
226
.10.1016/j.microrel.2018.10.003
26.
Kim
,
J.
, and
Yoon
,
D.
,
2023
, “
Thermomechanical Reliabilities of Pb-Free Solder Joints According to Ag Content in Harsh Environment
,”
IEEE Trans. Reliab.
,
72
(
4
), pp.
1610
1618
.10.1109/TR.2023.3256405
27.
Zuo
,
Y.
,
Bieler
,
T. R.
,
Zhou
,
Q.
,
Ma
,
L.
, and
Guo
,
F.
,
2018
, “
Electromigration and Thermomechanical Fatigue Behavior of Sn0.3Ag0.7Cu Solder Joints
,”
J. Electron. Mater.
,
47
(
3
), pp.
1881
1895
.10.1007/s11664-017-5980-0
28.
Chen
,
W. J.
,
Lee
,
Y. L.
,
Wu
,
T. Y.
,
Chen
,
T. C.
,
Hsu
,
C. H.
, and
Lin
,
M. T.
,
2018
, “
Effects of Electrical Current and External Stress on the Electromigration of Intermetallic Compounds Between the Flip-Chip Solder and Copper Substrate
,”
J. Electron. Mater.
,
47
(
1
), pp.
35
48
.10.1007/s11664-017-5685-4
29.
Chen
,
C.
,
Tong
,
H. M.
, and
Tu
,
K. N.
,
2010
, “
Electromigration and Thermomigration in Pb-Free Flip-Chip Solder Joints
,”
Annu. Rev. Mater. Res.
,
40
(
1
), pp.
531
555
.10.1146/annurev.matsci.38.060407.130253
30.
Yeh
,
E. C. C.
,
Choi
,
W. J.
,
Tu
,
K. N.
,
Elenius
,
P.
, and
Balkan
,
H.
,
2002
, “
Current-Crowding-Induced Electromigration Failure in Flip Chip Solder Joints
,”
Appl. Phys. Lett.
,
80
(
4
), pp.
580
582
.10.1063/1.1432443
31.
Bashir
,
M. N.
,
Haseeb
,
A. S. M. A.
,
Rahman
,
A. Z. M. S.
,
Fazal
,
M. A.
, and
Kao
,
C. R.
,
2015
, “
Reduction of Electromigration Damage in SAC305 Solder Joints by Adding Ni Nanoparticles Through Flux Doping
,”
J. Mater. Sci.
,
50
(
20
), pp.
6748
6756
.10.1007/s10853-015-9230-7
32.
Straubinger
,
D.
,
Hurtony
,
T.
, and
Géczy
,
A.
,
2022
, “
Impact of Electromigration and Isothermal Ageing on Lead-Free Solder Joints of Chip-Sized SMD Components
,”
J. Mater. Res. Technol.
,
21
, pp.
308
318
.10.1016/j.jmrt.2022.09.048
33.
Black
,
J. R.
,
1969
, “
Electromigration—A Brief Survey and Some Recent Results
,”
IEEE Trans. Electron Devices
,
16
(
4
), pp.
338
347
.10.1109/T-ED.1969.16754
34.
Choi
,
W. J.
,
Yeh
,
E. C. C.
, and
Tu
,
K. N.
,
2003
, “
Mean-Time-to-Failure Study of Flip Chip Solder Joints on CuNi(V)Al Thin Film Under Bump Metallization
,”
J. Appl. Phys.
,
94
, pp.
5665
5671
.10.1063/1.1616993
You do not currently have access to this content.