Abstract

Thermal stress-induced protrusions of copper through-silicon-vias (Cu-TSVs) during thermal processing pose substantial reliability concerns in three-dimensional (3D) system integration. In this study, a phase-field-crystal (PFC) model is used to investigate the protrusions and microstructural evolutions of blind Cu-TSVs under different loading conditions. Protrusions are observed only when the TSVs are under εx, εy, and γxy, whereas no protrusions are observed when the TSVs are subjected to pure shear strains γyx. The simulation results suggest that the grains in the top layer of a TSV contribute more to both the protrusion profile and the protrusion height than the grains in the lower layers. Moreover, the protrusion is larger when the misorientation among the grains is larger and the grain size along the y-direction is smaller. In addition, a phenomenological model linking protrusion and microstructural factors and a visual guide from the viewpoint of plastic flow are provided to understand the origins of Cu-TSV protrusion.

References

1.
Lau
,
J. H.
,
2019
, “
Recent Advances and Trends in Fan-Out Wafer/Panel-Level Packaging
,”
ASME J. Electron. Packag.
,
141
(
4
), p.
040801
.10.1115/1.4043341
2.
Huang
,
T. B.
,
Chou
,
B.
,
Tong
,
J.
,
Ogawa
,
T.
,
Sundaram
,
V.
, and
Tummala
,
R. R.
,
2017
, “
Via-First Process to Enable Copper Metallization of Glass Interposers With High-Aspect-Ratio, Fine-Pitch Through-Package-Vias
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
7
(
4
), pp.
544
551
.10.1109/TCPMT.2017.2654219
3.
Zhu
,
W.
,
Dong
,
G.
, and
Yang
,
Y.
,
2018
, “
Power and Thermal Constraints-Driven Modeling and Optimization for Through Silicon Via-Based Power Distribution Network
,”
ASME J. Electron. Packag.
,
140
(
4
), p.
041002
.10.1115/1.4040670
4.
Lee
,
C.
,
Hung
,
C.
,
Cheung
,
C.
,
Yang
,
P.
,
Kao
,
C.
,
Chen
,
D.
,
Shih
,
M.
,
Chien
,
C. C.
,
Hsiao
,
Y.
,
Chen
,
L.
,
Su
,
M.
,
Alfano
,
M.
,
Siegel
,
J.
,
Din
,
J.
, and
Black
,
B.
,
2016
, “
An Overview of the Development of a GPU With Integrated HBM on Silicon Interposer
,”
IEEE 66th Electronic Components and Technology Conference
(
ECTC
), Las Vegas, NV, May 31–June 3, pp.
1439
1444
.10.1109/ECTC.2016.348
5.
Rahim
,
K.
, and
Mian
,
A.
,
2017
, “
A Review on Laser Processing in Electronic and MEMS Packaging
,”
ASME J. Electron. Packag.
,
139
(
3
), p.
030801
.10.1115/1.4036239
6.
Bao
,
C.
, and
Srivastava
,
A.
,
2019
, “
Reducing Timing Side-Channel Information Leakage Using 3D Integration
,”
IEEE Trans. Dependable Secure Comput.
,
16
(
4
), pp.
665
678
.10.1109/TDSC.2017.2712156
7.
Shen
,
W.
,
Lin
,
Y.
,
Chen
,
S.
,
Chang
,
H.
,
Chang
,
T.
,
Lo
,
W.
,
Lin
,
C.
,
Chou
,
Y.
,
Kwai
,
D.
,
Kao
,
M.
, and
Chen
,
K.
,
2018
, “
3-D Stacked Technology of DRAM-Logic Controller Using Through-Silicon Via (TSV)
,”
IEEE J. Electron Devices Soc.
,
6
, pp.
396
402
.10.1109/JEDS.2018.2815344
8.
Shulaker
,
M. M.
,
Hills
,
G.
,
Park
,
R. S.
,
Howe
,
R. T.
,
Saraswat
,
K.
,
Wong
,
H. S. P.
, and
Mitra
,
S.
,
2017
, “
Three-Dimensional Integration of Nanotechnologies for Computing and Data Storage on a Single Chip
,”
Nature
,
547
(
7661
), pp.
74
78
.10.1038/nature22994
9.
Shen
,
W. W.
, and
Chen
,
K. N.
,
2017
, “
Three-Dimensional Integrated Circuit (3D IC) Key Technology: Through-Silicon Via (TSV)
,”
Nanoscale Res. Lett.
,
12
(
1
), p.
56
.10.1186/s11671-017-1831-4
10.
Gambino
,
J. P.
,
Adderly
,
S. A.
, and
Knickerbocker
,
J. U.
,
2015
, “
An Overview of Through-Silicon-Via Technology and Manufacturing Challenges
,”
Microelectron. Eng.
,
135
, pp.
73
106
.10.1016/j.mee.2014.10.019
11.
Araga
,
Y.
,
Nagata
,
M.
,
Miura
,
N.
,
Ikeda
,
H.
, and
Kikuchi
,
K.
,
2018
, “
Measurement and Analysis of Power Noise Characteristics for EMI Awareness of Power Delivery Networks in 3-D Through-Silicon Via Integration
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
8
(
2
), pp.
277
285
.10.1109/TCPMT.2017.2767065
12.
Srinivasa
,
S.
,
Li
,
X.
,
Chang
,
M.
,
Sampson
,
J.
,
Gupta
,
S. K.
, and
Narayanan
,
V.
,
2018
, “
Compact 3-D-SRAM Memory With Concurrent Row and Column Data Access Capability Using Sequential Monolithic 3-D Integration
,”
IEEE Trans. Very Large Scale Integration (VLSI) Syst.
,
26
(
4
), pp.
671
683
.10.1109/TVLSI.2017.2787562
13.
Jalilvand
,
G.
,
Ahmed
,
O.
,
Spinella
,
L.
,
Zhou
,
L.
, and
Jiang
,
T.
,
2019
, “
The Effective Control of Cu Through-Silicon Via Extrusion for Three-Dimensional Integrated Circuits by a Metallic Cap Layer
,”
Scr. Mater.
,
164
, pp.
101
104
.10.1016/j.scriptamat.2019.01.029
14.
De Wolf
,
I.
,
Croes
,
K.
, and
Beyne
,
E.
,
2018
, “
Expected Failures in 3-D Technology and Related Failure Analysis Challenges
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
8
(
5
), pp.
711
718
.10.1109/TCPMT.2018.2810321
15.
Vogel
,
D.
,
Auerswald
,
E.
,
Auersperg
,
J.
,
Bayat
,
P.
,
Rodriguez
,
R.
,
Zahn
,
D.
,
Rzepka
,
S.
, and
Michel
,
B.
,
2014
, “
Stress Analyses of High Spatial Resolution on TSV and BEoL Structures
,”
Microelectron. Reliab.
,
54
(
9–10
), pp.
1963
1968
.10.1016/j.microrel.2014.07.098
16.
Che
,
F. X.
,
Putra
,
W. N.
,
Heryanto
,
A.
,
Trigg
,
A.
,
Zhang
,
X.
, and
Gan
,
C. L.
,
2013
, “
Study on Cu Protrusion of Through-Silicon Via
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
3
(
5
), pp.
732
739
.10.1109/TCPMT.2013.2252955
17.
Okoro
,
C.
,
Yang
,
Y.
,
Vandevelde
,
B.
,
Swinnen
,
B.
,
Vandepitte
,
D.
,
Verlinden
,
B.
, and
de Wolf
,
I.
,
2008
, “
Extraction of the Appropriate Material Property for Realistic Modeling of Through-Silicon-Vias Using μ-Raman Spectroscopy
,”
International Interconnect Technology Conference
, Burlingame, CA, June 1–4, pp.
16
18
.
18.
Liu
,
X.
,
Thadesar
,
P. A.
,
Taylor
,
C. L.
,
Oh
,
H.
,
Kunz
,
M.
,
Tamura
,
N.
,
Bakir
,
M. S.
, and
Sitaraman
,
S. K.
,
2014
, “
In-Situ Microscale Through-Silicon Via Strain Measurements by Synchrotron X-Ray Microdiffraction Exploring the Physics Behind Data Interpretation
,”
Appl. Phys. Lett.
,
105
(
11
), p.
112109
.10.1063/1.4896141
19.
Jiang
,
T.
,
Im
,
J.
,
Huang
,
R.
, and
Ho
,
P. S.
,
2015
, “
Through-Silicon Via Stress Characteristics and Reliability Impact on 3D Integrated Circuits
,”
MRS Bull.
,
40
(
3
), pp.
248
256
.10.1557/mrs.2015.30
20.
Messemaeker
,
J. D.
,
Roussel
,
P. J.
,
Pedreira
,
O. V.
,
der Donck
,
T. V.
,
Huylenbroeck
,
S. V.
,
Beyne
,
E.
,
Wolf
,
I. D.
,
Stucchi
,
M.
, and
Croes
,
K.
,
2017
, “
Statistical Distribution of Through-Silicon Via Cu Pumping
,”
IEEE Trans. Device Mater. Reliab.
,
17
(
3
), pp.
549
559
.10.1109/TDMR.2017.2738154
21.
Liu
,
J.
,
Huang
,
Z.
,
Conway
,
P. P.
,
Altmann
,
F.
,
Petzold
,
M.
, and
Naumann
,
F.
,
2017
, “
On Reproducing the Copper Extrusion of Through-Silicon-Vias From the Atomic Scale
,”
18th International Conference on Electronic Packaging Technology
(
ICEPT
), Harbin, China, Aug. 16–19, pp.
789
796
.10.1109/ICEPT.2017.8046565
22.
Elder
,
K. R.
,
Katakowski
,
M.
,
Haataja
,
M.
, and
Grant
,
M.
,
2002
, “
Modeling Elasticity in Crystal Growth
,”
Phys. Rev. Lett.
,
88
(
24
), p.
245701
.10.1103/PhysRevLett.88.245701
23.
Elder
,
K. R.
, and
Grant
,
M.
,
2004
, “
Modeling Elastic and Plastic Deformations in Nonequilibrium Processing Using Phase Field Crystals
,”
Phys. Rev. E
,
70
(
5
), p.
051605
.10.1103/PhysRevE.70.051605
24.
Choudhary
,
M. A.
, and
Kundin
,
J.
,
2017
, “
Heteroepitaxial Anisotropic Film Growth of Various Orientations
,”
J. Mech. Phys. Solids
,
101
, pp.
118
132
.10.1016/j.jmps.2017.01.006
25.
Jreidini
,
P.
,
Kocher
,
G.
, and
Provatas
,
N.
,
2018
, “
Classical Nucleation Theory in the Phase-Field Crystal Model
,”
Phys. Rev. E
,
97
(
4
), p.
042802
.10.1103/PhysRevE.97.042802
26.
Berry
,
J.
,
Grant
,
M.
, and
Elder
,
K. R.
,
2006
, “
Diffusive Atomistic Dynamics of Edge Dislocations in Two Dimensions
,”
Phys. Rev. E
,
73
(
3
), p.
031609
.10.1103/PhysRevE.73.031609
27.
Berry
,
J.
,
Rottler
,
J.
,
Sinclair
,
C. W.
, and
Provatas
,
N.
,
2015
, “
Atomistic Study of Diffusion-Mediated Plasticity and Creep Using Phase Field Crystal Methods
,”
Phys. Rev. B
,
92
(
13
), p.
134103
.10.1103/PhysRevB.92.134103
28.
Wu
,
K. A.
,
Adland
,
A.
, and
Karma
,
A.
,
2010
, “
Phase-Field-Crystal Model for FCC Ordering
,”
Phys. Rev. E
,
81
(
6
), p.
061601
.10.1103/PhysRevE.81.061601
29.
Spiesshoefer
,
S.
,
Rahman
,
Z.
,
Vangara
,
G.
,
Polamreddy
,
S.
,
Burkett
,
S.
, and
Schaper
,
L.
,
2005
, “
Process Integration for Through-Silicon Vias
,”
J. Vac. Sci. Technol. A: Vac., Surf., Films
,
23
(
4
), pp.
824
829
.10.1116/1.1864012
30.
Huang
,
Z.
,
Liu
,
J.
,
Conway
,
P. P.
,
Hu
,
Z.
, and
Liu
,
Y.
,
2016
, “
An Atomistic Study of Copper Extrusion in Through-Silicon-Via Using Phase Field Crystal Models
,”
Sixth Electronic System-Integration Technology Conference
(
ESTC
), Grenoble, France, Sept. 13–15, pp.
1
8
.10.1109/ESTC.2016.7764700
31.
Stefanovic
,
P.
,
Haataja
,
M.
, and
Provatas
,
N.
,
2009
, “
Phase Field Crystal Study of Deformation and Plasticity in Nanocrystalline Materials
,”
Phys. Rev. E
,
80
(
4
), p.
046107
.10.1103/PhysRevE.80.046107
32.
Liu
,
J.
,
Huang
,
Z.
,
Zhang
,
Y.
, and
Conway
,
P. P.
,
2019
, “
Mechanisms of Copper Protrusion in Through-Silicon-Via Structures at the Nanoscale
,”
Jpn. J. Appl. Phys.
,
58
(
1
), p.
016502
.10.7567/1347-4065/aae898
33.
Heryanto
,
A.
,
Putra
,
W.
,
Trigg
,
A.
,
Gao
,
S.
,
Kwon
,
W.
,
Che
,
F.
,
Ang
,
X.
,
Wei
,
J.
,
I Made
,
R.
,
Gan
,
C.
, and
Pey
,
K.
,
2012
, “
Effect of Copper TSV Annealing on Via Protrusion for TSV Wafer Fabrication
,”
J. Electron. Mater.
,
41
(
9
), pp.
2533
2542
.10.1007/s11664-012-2117-3
34.
Jiang
,
T.
,
Wu
,
C.
,
Spinella
,
L.
,
Im
,
J.
,
Tamura
,
N.
,
Kunz
,
M.
,
Son
,
H.-Y.
,
Kim
,
B. G.
,
Huang
,
R.
, and
Ho
,
P. S.
,
2013
, “
Plasticity Mechanism for Copper Extrusion in Through-Silicon Vias for Three-Dimensional Interconnects
,”
Appl. Phys. Lett.
,
103
(
21
), p.
211906
.10.1063/1.4833020
35.
Messemaeker
,
J. D.
,
Pedreira
,
O. V.
,
Philipsen
,
H.
,
Beyne
,
E.
,
Wolf
,
I. D.
,
der Donck
,
T. V.
, and
Croes
,
K.
,
2014
, “
Correlation Between Cu Microstructure and TSV Cu Pumping
,”
IEEE 64th Electronic Components and Technology Conference
(
ECTC
), Orlando, FL, May 27–30, pp.
613
619
.10.1109/ECTC.2014.6897349
36.
Wang
,
Y.-J.
,
Ishii
,
A.
, and
Ogata
,
S.
,
2011
, “
Transition of Creep Mechanism in Nanocrystalline Metals
,”
Phys. Rev. B
,
84
(
22
), p.
224102
.10.1103/PhysRevB.84.224102
37.
Wang
,
Y.-J.
,
Gao
,
G.-J. J.
, and
Ogata
,
S.
,
2013
, “
Atomistic Understanding of Diffusion Kinetics in Nanocrystals From Molecular Dynamics Simulations
,”
Phys. Rev. B
,
88
(
11
), p.
115413
.10.1103/PhysRevB.88.115413
38.
Kang
,
M.-K.
,
Kim
,
D.-Y.
, and
Hwang
,
N. M.
,
2002
, “
Ostwald Ripening Kinetics of Angular Grains Dispersed in a Liquid Phase by Two-Dimensional Nucleation and Abnormal Grain Growth
,”
J. Eur. Ceram. Soc.
,
22
(
5
), pp.
603
612
.10.1016/S0955-2219(01)00370-3
39.
Gottstein
,
G.
,
2013
,
Physical Foundations of Materials Science
,
Springer Science & Business Media
,
Berlin
.
40.
Yang
,
X.-S.
,
Wang
,
Y.-J.
,
Zhai
,
H.-R.
,
Wang
,
G.-Y.
,
Su
,
Y.-J.
,
Dai
,
L.
,
Ogata
,
S.
, and
Zhang
,
T.-Y.
,
2016
, “
Time-, Stress-, and Temperature-Dependent Deformation in Nanostructured Copper: Creep Tests and Simulations
,”
J. Mech. Phys. Solids
,
94
, pp.
191
206
.10.1016/j.jmps.2016.04.021
41.
Tian
,
T.
,
Morusupalli
,
R.
,
Shin
,
H.
,
Son
,
H.-Y.
,
Byun
,
K.-Y.
,
Joo
,
Y.-C.
,
Caramto
,
R.
,
Smith
,
L.
,
Shen
,
Y.-L.
,
Kunz
,
M.
,
Tamura
,
N.
, and
Budiman
,
A.
,
2016
, “
On the Mechanical Stresses of Cu Through-Silicon Via (TSV) Samples Fabricated by SK Hynix vs. SEMATECH – Enabling Robust and Reliable 3-D Interconnect/Integrated Circuit (IC) Technology
,”
Procedia Eng.
,
139
, pp.
101
111
.10.1016/j.proeng.2015.09.242
42.
Spinella
,
L.
,
Im
,
J.
,
Tamura
,
N.
,
Jiang
,
T.
, and
Ho
,
P. S.
,
2017
, “
Synchrotron X-Ray Microdiffraction Investigation of Scaling Effects on Plasticity and the Correlation to TSV Extrusion
,”
IEEE 67th Electronic Components and Technology Conference (ECTC)
, Orlando, FL, May 30–June 2, pp.
752
757.
43.
Biswas
,
S.
,
Grant
,
M.
,
Samajdar
,
I.
,
Haldar
,
A.
, and
Sain
,
A.
,
2013
, “
Micromechanics of Emergent Patterns in Plastic Flows
,”
Sci. Rep.
,
3
(
1
), p.
2728
.10.1038/srep02728
You do not currently have access to this content.