Two-layer single phase flow microchannels were studied for cooling of electronic chips with a hot spot. A chip with 2.45 × 2.45 mm footprint and a hot spot of 0.5 × 0.5 mm in its center was studied in this research. Two different cases were simulated in which heat fluxes of 1500 W cm−2 and 2000 W cm−2 were applied at the hot spot. Heat flux of 1000 W cm−2 was applied on the rest of the chip. Each microchannel layer had 20 channels with an aspect ratio of 4:1. Direction of the second microchannel layer was rotated 90 deg with respect to the first layer. Fully three-dimensional (3D) conjugate heat transfer analysis was performed to study the heat removal capacity of the proposed two-layer microchannel cooling design for high heat flux chips. In the next step, a linear stress analysis was performed to investigate the effects of thermal stresses applied to the microchannel cooling design due to variations of temperature field. Results showed that two-layer microchannel configuration was capable of removing heat from high heat flux chips with a hot spot.

References

1.
Bar-Cohen
,
A.
,
2013
, “
Gen-3 Thermal Management Technology: Role of Microchannels and Nanostructures in an Embedded Cooling Paradigm
,”
ASME J. Nanotechnol. Eng. Med.
,
4
(
2
), p.
020907
.10.1115/1.4023898
2.
Sahu
,
V.
,
Joshi
,
Y.
, and
Fedorov
,
A.
,
2009
, “
Hybrid Solid State/Fluidic Cooling for Hot Spot Removal
,”
Nanoscale Microscale Thermophys. Eng.
,
13
(
3
), pp.
135
150
.10.1080/15567260903058033
3.
Sahu
,
V.
,
Joshi
,
Y. K.
, and
Fedorov
,
A. G.
,
2010
, “
Experimental Investigation of Hotspot Removal Using Superlattice Cooler
,”
12th IEEE Intersociety Conference Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), Las Vegas, NV, June 2–5.10.1109/ITHERM.2010.5501255
4.
Sahu
,
V.
,
Fedorov
,
A. G.
,
Joshi
,
Y.
,
Yazawa
,
K.
,
Ziabari
,
A.
, and
Shakouri
,
A.
,
2012
, “
Energy Efficient Liquid-Thermoelectric Hybrid Cooling for Hot-Spot Removal
,”
28th Annual IEEE Semiconductor Thermal Measurement and Management Symposium
(
SEMI-THERM
),
San Jose, CA
, Mar. 18–22, pp.
130
134
.10.1109/STHERM.2012.6188838
5.
Alfieri
,
F.
,
Tiwari
,
M. K.
,
Zinovik
,
I.
,
Poulikakos
,
D.
,
Brunschwiler
,
T.
, and
Michel
,
B.
,
2010
, “
3D Integrated Water Cooling of a Composite Multilayer Stack of Chips
,”
ASME J. Heat Transfer
,
132
(
12
), p.
121402
.10.1115/1.4002287
6.
Alfieri
,
F.
,
Gianini
,
S.
,
Tiwari
,
M. K.
,
Brunschwiler
,
T.
,
Michel
,
B.
, and
Poulikakos
,
D.
,
2014
, “
Computational Modeling of Hot-Spot Identification and Control in 3-D Stacked Chips With Integrated Cooling
,”
Numer. Heat Transfer, Part A
,
65
(
3
), pp.
201
215
.10.1080/10920277.2013.826480
7.
Zhang
,
Y.
,
Dembla
,
A.
, and
Bakir
,
M. S.
,
2013
, “
Silicon Micropin-Fin Heat Sink With Integrated TSVs for 3-D ICs: Tradeoff Analysis and Experimental Testing
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
3
(
11
), pp.
1842
1850
.10.1109/TCPMT.2013.2267492
8.
Zhang
,
Y.
,
Zheng
,
L.
, and
Bakir
,
M. S.
,
2013
, “
3-D Stacked Tier-Specific Microfluidic Cooling for Heterogeneous 3-D ICs
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
3
(
11
), pp.
1811
1819
.10.1109/TCPMT.2013.2281605
9.
Sullivan
,
O.
,
Gupta
,
M. P.
,
Mukhopadhyay
,
S.
, and
Kumar
,
S.
,
2012
, “
Array of Thermoelectric Coolers for On-Chip Thermal Management
,”
ASME J. Electron. Packag.
,
134
(
2
), p.
021005
.10.1115/1.4006141
10.
Redmond
,
M.
, and
Kumar
,
S.
,
2014
, “
Optimization of Thermoelectric Coolers for Hotspot Cooling in Three-Dimensional Stacked Chips
,”
ASME J. Electron. Packag.
,
137
(
1
), p.
011006
.10.1115/1.4028254
11.
Abdoli
,
A.
, and
Dulikravich
,
G. S.
,
2014
, “
Multi-Objective Design Optimization of Branching, Multifloor, Counterflow Microheat Exchangers
,”
ASME J. Heat Transfer
,
136
(
10
), p.
101801
.10.1115/1.4027911
12.
Abdoli
,
A.
, and
Dulikravich
,
G. S.
,
2014
, “
Optimized Multi-Floor Throughflow Micro Heat Exchangers
,”
Int. J. Therm. Sci.
,
78
, pp.
111
123
.10.1016/j.ijthermalsci.2013.12.008
13.
Wei
,
X.
, and
Joshi
,
Y.
,
2002
, “
Optimization Study of Stacked Micro-Channel Heat Sinks for Micro-Electronic Cooling
,”
Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITHERM, 2002
),
San Diego, CA
, June 1, pp.
441
448
.10.1109/ITHERM.2002.1012490
14.
Li
,
J.
, and
Peterson
,
G. P.
,
2007
, “
3-Dimensional Numerical Optimization of Silicon-Based High Performance Parallel Microchannel Heat Sink With Liquid Flow
,”
Int. J. Heat Mass Transfer
,
50
(
15–16
), pp.
2895
2904
.10.1016/j.ijheatmasstransfer.2007.01.019
15.
Abdoli
,
A.
,
Jimenez
,
G.
, and
Dulikravich
,
G. S.
,
2015
, “
Thermo-Fluid Analysis of Micro Pin-Fin Array Cooling Configurations for High Heat Fluxes With a Hot Spot
,”
Int. J. Therm. Sci.
,
90
, pp.
290
297
.10.1016/j.ijthermalsci.2014.12.021
16.
Muzychka
,
Y. S.
,
Duan
,
Z. P.
, and
Yovanovich
,
M. M.
,
2011
, “
Fluid Friction and Heat Transfer in Microchannels
,”
Microfluidics and Nanofluidics Handbook: Chemistry, Physics, and Life Science Principles
,
CRC Press
, Boca Raton, pp. 477–610.
17.
Saha
,
A. A.
, and
Mitra
,
S. K.
,
2012
, “
Pressure-Driven Flow in Microchannels
,”
Microfluidics and Nanofluidics Handbook: Chemistry, Physics, and Life Science Principles
,
CRC Press
,
Boca Raton
, pp. 139–154.
18.
Probstein
,
R. F.
,
1994
,
Physicochemical Hydrodynamics: An Introduction
, 2nd ed.,
Wiley
,
New York
.
19.
Sharp
,
K. V.
,
Adrian
,
R. J.
,
Santiago
,
J. G.
, and
Molho
,
J. I.
,
2005
, “
Liquid Flow in Microchannels
,”
The MEMS Handbook
, 2nd ed., Vol.
1
,
M.
Gad-el-Hak
, ed.,
CRC Press
,
Boca Raton
, Chap. 10.
20.
Janson
,
S. W.
,
Helvajian
,
H.
, and
Breuer
,
K.
,
1999
, “
MEMS, Microengineering and Aerospace Systems
,”
AIAA
Paper No. 99-3802.10.2514/6.1999-3802
21.
Gad-el-Hak
,
M.
,
1999
, “
The Fluid Mechanics of Microdevices: The Freeman Scholar Lecture
,”
ASME J. Fluids Eng.
121
(
1
), pp.
5
33
.10.1115/1.2822013
22.
Almaneea
,
A.
,
Summers
,
J.
,
Thompson
,
H.
, and
Kapur
,
N.
,
2013
, “
Optimal Heat Sink Fin and Cold Lid Heights for Liquid Immersed Servers
,”
COMSOL Conference
,
Rotterdam, The Netherlands, Oct. 23–25
, pp. 1–16.
23.
Kumar
,
V.
,
Jonnalagadda
,
D.
,
Subbiah
,
J.
, and
Thippareddi
,
H.
,
2007
, “
Conjugate Heat Transfer Analysis of an Egg
,”
COMSOL Conference
,
Boston, MA
, Oct. 4–6, pp. 1–6.
24.
Hetnarski
,
R. B.
, and
Eslami
,
M. R.
,
2009
,
Thermal Stresses–Advanced Theory and Applications
,
Springer
,
The Netherlands
.
25.
Petersen
,
K. E.
,
1982
, “
Silicon as a Mechanical Material
,”
Proc. IEEE
,
70
(
5
), pp.
420
457
.10.1109/PROC.1982.12331
You do not currently have access to this content.