The paper reports the thermal performance of a nanofluid (MCNT/water) charged heat pipe with phase change material (PCM) as energy storage material (ESM) for electronic cooling. The adiabatic section of heat pipe is covered by the PCM stored in a container made of acrylic material. Here, paraffin is used as PCM. PCM can absorb and release thermal energy depending upon the fluctuations in the heating load. Tests are conducted to obtain the temperature distributions in PCM during charge/discharge processes. Present study utilizes two different ESM (water and paraffin), different fan speeds and heating powers in the PCM cooling module. The cooling module with heat pipe and paraffin as ESM found to save higher fan power consumption compared to the cooling module that utilities only a heat pipe.

References

1.
Kim
,
K. S.
,
Won
,
M. H.
,
Kim
,
J. W.
, and
Back
,
B. J.
,
2003
, “
Heat Pipe Cooling Technology for Desktop PC CPU
,”
Appl. Therm. Eng.
,
23
(9), pp.
1137
1144
.10.1016/S1359-4311(03)00044-9
2.
Chang
,
Y. W.
,
Cheng
,
C. H.
,
Wang
,
J. C.
, and
Chen
,
S. L.
,
2008
, “
Heat Pipe for Cooling of Electronic Equipment
,”
Energy Convers. Manage.
,
49
(
11
), pp.
3398
3404
.10.1016/j.enconman.2008.05.002
3.
Wang
,
J.
,
2011
, “
L-Type Heat Pipes Application in Electronic Cooling System
,”
Int. J. Therm. Sci.
,
50
(1), pp.
97
105
.10.1016/j.ijthermalsci.2010.07.001
4.
Take
,
K.
, and
Webb
,
R. L.
,
2001
, “
Thermal Performance of Integrated Plate Heat Pipe With a Heat Spreader
,”
ASME J. Electron. Packag.
,
123
(
3
), pp.
189
195
.10.1115/1.1348010
5.
Lu
,
M.
, and
Mok
,
L.
,
2006
, “
A Graphite Foams Based Vapor Chamber for Chip Heat Spreading
,”
ASME J. Electron. Packag.
,
128
(
4
), pp.
427
431
.10.1115/1.2351908
6.
Yu
,
X.
,
Zhang
,
L.
,
Zhou
,
E.
, and
Feng
,
Q.
,
2011
, “
Heat Transfer of an IGBT Module Integrated With a Vapor Chamber
,”
ASME J. Electron. Packag.
,
133
(
1
), p.
011008
.10.1115/1.4003214
7.
Choi
,
J.
,
Jeong
,
M.
,
Yoo
,
J.
, and
Seo
,
M.
,
2012
, “
A New CPU Cooler Design Based on an Active Cooling Heat Sink Combined With Heat Pipes
,”
Appl. Therm. Eng.
,
44
, pp.
50
66
.10.1016/j.applthermaleng.2012.03.027
8.
Choi
,
S. U. S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,” Developments and Applications of Non-Newtonian Flows, FED-vol. 231/MD-vol. 66,
D. A.
Siginer
,
H. P.
Wang
, eds., American Society of Mechanical Engineers, New York, pp.
99
105
.
9.
Liu
,
Z. H.
,
Yang
,
X. F.
, and
Guo
,
G. L.
,
2007
, “
Effect of Nanoparticles in Nanofluid on Thermal Performance in a Miniature Thermosyphon
,”
J. Appl. Phys.
,
102
(1), p.
013526
.10.1063/1.2748348
10.
Liu
,
Z. H.
,
Yang
,
X. F.
, and
Guo
,
G. L.
,
2010
, “
Influence of Carbon Nanotubes Suspension on the Thermal Performance of a Miniature Thermosyphon
,”
Int. J. Heat Mass Transfer
,
53
(
9–10
), pp.
1914
1920
.10.1016/j.ijheatmasstransfer.2009.12.065
11.
Naphon
,
P.
,
Assadamongkol
,
P.
, and
Borirak
,
T.
,
2008
, “
Experimental Investigation of Titanium Nanofluids on the Heat Pipe Thermal Efficiency
,”
Int. Commun. Heat Mass Transfer
,
35
(
10
), pp.
1316
1319
.10.1016/j.icheatmasstransfer.2008.07.010
12.
Gabriela
,
H.
,
Angel
,
H.
,
Ion
,
M.
, and
Florian
,
D.
,
2011
, “
Experimental Study of the Thermal Performance of Thermosyphon Heat Pipe Using Iron Oxide Nanoparticles
,”
Int. J. Heat Mass Transfer
,
54
(1–3), pp.
656
661
.10.1016/j.ijheatmasstransfer.2010.09.005
13.
Noie
,
S. H.
,
Zeinali Heris
,
S.
,
Kahani
,
M.
, and
Nowee
,
S. M.
,
2009
, “
Heat Transfer Enhancement Using Al2O3/Water Nanofluid in a Two-Phase Closed Thermosyphon
,”
Int. J. Heat Fluid Flow
,
30
(4), pp.
700
705
.10.1016/j.ijheatfluidflow.2009.03.001
14.
Putra
,
N.
,
Yanuar
, and
Iskandar
,
F. N.
,
2011
, “
Application of Nanofluids to a Heat Pipe Liquid-Block and the Thermoelectric Cooling of Electronic Equipment
,”
Exp. Therm. Fluid Sci.
,
35
(7), pp.
1274
1281
.10.1016/j.expthermflusci.2011.04.015
15.
Yousefi
,
T.
,
Mousavi
,
S. A.
,
Farahbakhsh
,
B.
, and
Saghir
,
M. Z.
,
2013
, “
Experimental Investigation on the Performance of CPU Coolers: Effect of Heat Pipe Inclination Angle and the Use of Nanofluids
,”
Microelectron. Reliab.
,
53
(12), pp.
1954
1961
.10.1016/j.microrel.2013.06.012
16.
Jahani
,
K.
,
Mohammadi
,
M.
,
Shafii
,
M. B.
, and
Shiee
,
Z.
,
2013
, “
Promising Technology for Electronic Cooling Nanofluidic Micro Pulsating Heat Pipes
,”
ASME J. Electron. Packag.
,
135
(
2
), p.
021005
.10.1115/1.4023847
17.
Chougule
,
S. S.
,
Pise
,
A. T.
, and
Madane
,
P. A.
,
2012
, “
Performance of Nanofluid-Charged Solar Water Heater by Solar Tracking System
,” International Conference on Advances in Engineering, Science and Management (ICAESM), Nagapattiam, India, Mar. 30–31, pp.
247
254
.
18.
Pise
,
A. T.
, and
Chougule
,
S. S.
,
2011
, “
Experimental Investigation Heat Transfer Augmentation of Solar Heat Pipe Collector by Using Nanofluid
,”
21st National and 10th ISHMT-ASME Heat and Mass Transfer Conference
, Chennai, India, Dec. 27–30, Paper No. ISHMT_IND_05_011.
19.
Chougule
,
S. S.
,
Sahu
,
S. K.
, and
Pise
,
A. T.
,
2014
, “
Thermal Performance of Two Phase Thermosyphon Flat-Plate Solar Collectors by Using Nanofluid
,”
ASME J. Sol. Energy
,
136
(
1
), p.
014503
.10.1115/1.4025591
20.
Chougule
,
S. S.
,
Sahu
,
S. K.
, and
Pise
,
A. T.
,
2013
, “
Performance Enhancement of Two Phase Thermosyphon Flat-Plate Solar Collectors by Using Surfactant and Nanofluid
,”
Front. Heat Pipes
,
4
(
1
), p. 013002.10.5098/fhp.v4.1.3002
21.
Chougule
,
S. S.
, and
Sahu
,
S. K.
,
2014
, “
Comparative Study of Cooling Performance of Automobile Radiator Using Al2O3/Water and CNT/Water Nanofluid
,”
ASME J. Nanotech. Eng. Med.
,
5
(
1
), p.
011001
.10.1115/1.4026971
22.
Chougule
,
S. S.
, and
Sahu
,
S. K.
, 2014, “
Thermal Performance of Automobile Radiator Using Carbon Nanotube-Water Nanofluid—Experimental Study
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
4
), p.
041009
.10.1115/1.4027678
23.
Chougule
,
S. S.
, and
Sahu
,
S. K.
, 2013, “
Comparison of Augmented Thermal Performance of CNT/Water and Al2O3/Water Nanofluids in Laminar Flow Through a Straight Circular Duct Fitted With Helical Screw Tape Inserts
,”
ASME J. Nanotechnol. Eng. Med.
,
4
(
4
), p.
040904
.10.1115/1.4026971
24.
Chougule
,
S. S.
, and
Sahu
,
S. K.
, “
Comparative Study on Heat Transfer Enhancement of Low Volume Concentration of Al2O3–Water and CNT–Water Nanofluids in Transition Regime Using Helical Screw Tape Inserts
,”
Exp. Heat Transfer
(accepted).10.1080/08916152.2014.926432
25.
Chougule
,
S. S.
, and
Sahu
,
S. K.
,
2015
, “
Performance of Wickless Heat Pipe Flat Plate Solar Collectors Having Different Filling Ratios
,”
ASME J. Sol. Energy
,
137
(
2
), p.
024501
.10.1115/1.4028701
26.
Chougule
,
S. S.
, and
Sahu
,
S. K.
,
2013
, “
Model of Heat Conduction in Hybrid Nanofluid
,”
International Conference on Emerging Trends in Computing, Communication and Nanotechnology
(
ICE-CCN 2013
), Tirunelveli, India, Mar. 25–26, pp.
337
341
.10.1109/ICE-CCN.2013.6528519
27.
Chougule
,
S. S.
, and
Sahu
,
S. K.
,
2013
, “
Experimental Investigation of Heat Transfer Augmentation in Automobile Radiator With CNT/Water Nanofluid
,”
ASME
Paper No. MNHMT2013-22100.10.1115/MNHMT2013-22100
28.
Chougule
,
S. S.
, and
Sahu
,
S. K.
,
2013
, “
Comparison of Augmented Thermal Performance of CNT/Water and Al2O3/Water Nanofluids in Transition Flow Through a Straight Circular Duct Fitted With Helical Screw Tape Inserts
,”
22nd National and 11th ISHMT-ASME Heat and Mass Transfer Conference
, IIT Kharagpur, India, Dec. 28–31, Paper No. HMTC1300811.
29.
Chougule
,
S. S.
, and
Sahu
,
S. K.
,
2014
, “
An Integrated Effect of PCM and Nanofluid Charged Heat Pipe for Electronics Cooling
,”
ASME 12th International Conference on Nanochannels, Microchannels, and Minichannels
, Chicago, IL, Aug. 13–17, Paper No. FEDSM2014-21769.
30.
Chougule
,
S. S.
,
Pise
,
A. T.
, and
Pardeshi
,
P. S.
,
2012
, “
Studies of CNT-Nanofluid in Two Phase System
,”
Int. J. Global Technology Initiatives
,
1
(1), pp.
F14
F20
.
31.
Cao
,
Y.
,
Gao
,
M.
,
Beam
,
J. E.
,
1997
, “
Experiments and Analyses of Flat Miniature Heat Pipes
,”
J. Thermophys. Heat Transfer
,
11
(
2
), pp.
158
164
.10.2514/2.6247
32.
Hopkins
,
R.
,
Faghri
,
A.
, and
Khrustalev
,
D.
,
1999
, “
Flat Miniature Heat Pipes With Micro Capillary Grooves
,”
ASME J. Heat Transfer
,
121
(
1
), pp.
102
109
.10.1115/1.2825922
33.
Weng
,
Y. C.
,
Cho
,
H. P.
,
Chang
,
C. C.
, and
Chen
,
S. L.
,
2011
, “
Heat Pipe With PCM for Electronic Cooling
,”
Appl. Energy
,
88
(5), pp.
1825
1833
.10.1016/j.apenergy.2010.12.004
34.
Kreith
,
F.
, and
Bohn
,
M. S.
,
2001
,
Principles of Heat Transfer
, Cengage Learning Inc., Stamford, CT.
35.
O'Neill
,
P. S.
,
Gottzman
,
C. F.
, and
Terbot
,
J. W.
,
1972
, “
Novel Heat Exchanger Increases Cascade Cycle Efficiency for Natural Gas Liquefaction
,”
Advances in Cryogenic Engineering
,
K. D.
Timmerhaus
, ed.,
Plenum
,
New York
, pp.
420
437
.
36.
Rieger
,
H.
,
Projahn
,
U.
, and
Beer
,
H.
,
1982
, “
Analysis of the Heat Transport Mechanisms During Melting Around a Horizontal Circular Cylinder
,”
Int. J. Heat Mass Transfer
,
25
(1), pp.
137
147
.10.1016/0017-9310(82)90242-3
37.
Chiang
,
Y. C.
,
2005
, “
Study and Application of the Micro Structure Vapor Chamber
,” Ph.D. thesis, National Taiwan University, Taipei City, Taiwan.
You do not currently have access to this content.