This study goes beyond the common microchannel cooling system composed of uniform parallel straight microchannels and proposed a three-stage design approach for spatially thermal-aware microchannel cooling of 2D multicore processors. By applying effective strategies and arranging key design parameters, stronger cooling is provided under the high power core area, and less cooling is provided under the low power cache area to effectively save the precious pumping power, lower the hot spot temperature and lower temperature gradients on chip. Two microchannel cooling systems are specifically designed for a 2 core 150 W Intel Tulsa processor and an 8 core 260 W (doubled power) Intel Nehalem processor with single phase HFE7100 as coolant. For the Tulsa processor, a strategy named strip-and-zone is used. The final design leads to 30 kPa pressure drop and 0.094 W pumping power while maintains the hot spot temperature to be 75°C. For the Nehalem processor, a split flow microchannel system and a widen-inflow strategy are applied. A design is achieved to cost 15 kPa pressure drop and 0.0845 W pumping power while maintains the hot spot temperature to be 82.9°C. The design approach in this study provides the basic guide for the industrial applications of effective multicore processor cooling using microchannels.

References

1.
Parkhurst
,
J.
,
Darringer
,
J.
, and
Grundmann
,
B.
,
2006
, “
From Single Core to Multi-Core: Preparing for a New Exponential
,”
IEEE/ACM International Conference on Computer-Aided Design
(
ICCAD '06
), San Jose, CA, November 5–9, pp.
67
72
.10.1145/1233501.1233516
2.
Skadron
,
K.
,
Stan
,
M. R.
,
Huang
,
W.
,
Velusamy
,
S.
,
Sankaranarayanan
,
K.
, and
Tarjan
,
D.
,
2003
, “
Temperature-Aware Microarchitecture
,”
30th Annual International Symposium on Computer Architecture
(
ISCA '03
), San Diego, CA, June 9–11, pp.
2
13
.10.1145/859618.859620
3.
Sankaranarayanan
,
K.
,
Velusamy
,
S.
,
Stan
,
M.
, and
Skadron
,
K.
,
2005
, “
A Case for Thermal-Aware Floorplanning at the Microarchitectural Level
,”
J. Instr.-Level Parallelism
,
7
(1)
, pp.
8
16
4.
Karajgjikar
,
S.
,
Agonafer
,
D.
,
Ghose
,
K.
,
Sammakia
,
B.
,
Amon
,
C.
, and
Refai-Ahmed
,
G.
,
2010
, “
Multi-Objective Optimization to Improve Both Thermal and Device Performance of a Nonuniformly Powered Micro-Architecture
,”
ASME J. Electron. Packag.
,
132
(2), p.
021008
.10.1115/1.4001852
5.
Sridhar
,
A.
,
Vincenzi
,
A.
,
Ruggiero
,
M.
,
Brunschwiler
,
T.
, and
Atienza
,
D.
,
2010
, “
3D-ICE: Fast Compact Transient Thermal Modeling for 3D ICs With Inter-Tier Liquid Cooling
,”
International Conference on Computer-Aided Design
(
ICCAD'10
), San Jose, CA, November 7–11, pp.
463
470
.
6.
Sridhar
,
A.
,
Vincenzi
,
A.
,
Ruggiero
,
M.
,
Brunschwiler
,
T.
, and
Atienza
,
D.
,
2010
, “
Compact Transient Thermal Model for 3D ICs With Liquid Cooling Via Enhanced Heat Transfer Cavity Geometries
,”
16th International Workshop on Thermal Investigations of ICs and Systems
(
THERMINIC'10
), Barcelona, Spain, October 6–8.
7.
Coskun
,
A. K.
,
Ayala
,
J. L.
,
Atienza
,
D.
, and
Rosing
,
T. S.
,
2009
, “
Modeling and Dynamic Management of 3D Multicore Systems With Liquid Cooling
,”
17th IFIP International Conference on Very Large Scale Integration
(
VLSI-SoC
), Florianópolis, Brazil, October 12–14, pp.
35
40
.10.1109/VLSISOC.2009.6041327
8.
Rayasam
,
M.
,
Chaparala
,
S.
,
Farnam
,
D.
,
Sammakia
,
B. G.
, and
Subbarayan
,
G.
,
2009
, “
Thermal Solution Maps: A Strategy for Thermal Design of Three-Dimensional Packages
,”
ASME J. Electron. Packag.
,
131
(1), p.
011015
.10.1115/1.3077131
9.
Kim
,
Y. J.
,
Joshi
,
Y. K.
,
Fedorov
,
A. G.
,
Lee
,
Y. J.
, and
Lim
,
S. K.
,
2010
, “
Thermal Characterization of Interlayer Microfluidic Cooling of Three-Dimensional Integrated Circuits With Nonuniform Heat Flux
,”
ASME J. Heat Transfer
,
132
(4), p.
041009
.10.1115/1.4000885
10.
Shi
,
B.
,
Srivastava
,
A.
, and
Wang
,
P.
,
2011
, “
Non-Uniform Micro-Channel Design for Stacked 3d-ICs
,”
48th ACM/EDAC/IEEE Design Automation Conference (DAC)
, San Diego, CA, June 5–9, pp.
658
663
.
11.
Brunschwiler
,
T.
,
Paredes
,
S.
,
Drechsler
,
U.
,
Michel
,
B.
,
Wunderle
,
B.
, and
Reichl
,
H.
,
2011
, “
Angle-of-Attack Investigation of Pin-Fin Arrays in Nonuniform Heat-Removal Cavities for Interlayer Cooled Chip Stacks
,”
27th IEEE Semiconductor Thermal Measurement and Management Symposium
(
SEMI-THERM
), San Jose, CA, March 20–24, pp.
116
124
.10.1109/STHERM.2011.5767188
12.
Kandlikar
,
S. G.
,
2005
, “
High Flux Heat Removal With Microchannels—A Roadmap of Challenges and Opportunities
,”
Heat Transfer Eng.
,
26
(
8
), pp.
5
14
.10.1080/01457630591003655
13.
Monchiero
,
M.
,
Canal
,
R.
, and
González
,
A.
,
2006
, “
Design Space Exploration for Multicore Architectures: A Power/Performance/Thermal View
,”
20th Annual International Conference on Supercomputing
(
ICS '06
), Queensland, Australia, June 28–July 1, pp.
177
186
.10.1145/1183401.1183428
14.
Monchiero
,
M.
,
Canal
,
R.
, and
Gonzalez
,
A.
,
2008
, “
Power/Performance/Thermal Design-Space Exploration for Multicore Architectures
,”
IEEE Trans. Parallel Distrib. Syst.
,
19
(
5
), pp.
666
681
.10.1109/TPDS.2007.70756
15.
Kandlikar
,
S. G.
, and
Upadhye
,
H. R.
,
2005
, “
Extending the Heat Flux Limit With Enhanced Microchannels in Direct Single-Phase Cooling of Computer Chips
,”
IEEE 21st Annual Symposium Semiconductor Thermal Measurement Management
, San Jose, CA, March 15–17, pp.
8
15
.10.1109/STHERM.2005.1412152
16.
Coskun
,
A. K.
,
Rosing
,
T. T.
,
Whisnant
,
K. A.
, and
Gross
,
K. C.
,
2008
, “
Static and Dynamic Temperature-Aware Scheduling for Multiprocessor SoCs
,”
IEEE Trans. VLSI Syst.
,
16
(
9
), pp.
1127
1140
.10.1109/TVLSI.2008.2000726
17.
Nakayama
,
W.
,
2013
, “
Study on Heat Conduction in a Simulated Multicore Processor Chip—Part II: Case Studies
,”
ASME J. Electron. Packag.
,
135
(2), p.
021003
.10.1115/1.4023292
18.
Iverson
,
B. D.
, and
Garimella
,
S. V.
,
2008
, “
Recent Advances in Microscale Pumping Technologies: A Review and Evaluation
,”
Microfluid. Nanofluid.
,
5
(
2
), pp.
145
174
.10.1007/s10404-008-0266-8
19.
Li
,
Y.
,
Zhang
,
Y.
, and
Yao
,
S. C.
,
2013
, “
Porous Media Thermal Modeling of An Electronic Chip With Non-Uniform Power Distribution and Cooled by Micro-Channels
,”
ASME
Paper No. HT2013-17184. 10.1115/HT2013-17184
20.
Kim
,
S. J.
, and
Kim
,
D.
,
1999
, “
Forced Convection in Microstructures for Electronic Equipment Cooling
,”
ASME J. Heat Transfer
,
121
(
3
), pp.
635
645
.10.1115/1.2826027
21.
Kim
,
S. J.
,
Kim
,
D.
, and
Lee
,
D. Y.
,
2000
, “
On the Local Thermal Equilibrium in Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
43
(
10
), pp.
1735
1748
.10.1016/S0017-9310(99)00259-8
22.
Muzychka
,
Y. S.
, and
Yovanovich
,
M. M.
,
2004
, “
Laminar Forced Convection Heat Transfer in the Combined Entry Region of Non-Circular Ducts
,”
ASME J. Heat Transfer
,
126
(
1
), pp.
54
61
.10.1115/1.1643752
23.
Kays
,
W. M.
,
Crawford
,
B. E.
, and
Weigand
,
B.
,
1993
,
Convective Heat and Mass Transfer
,
McGraw-Hill
,
New York
, Chap. IX.
24.
Lee
,
P. S.
, and
Garimella
,
S. V.
,
2006
, “
Thermally Developing Flow and Heat Transfer in Rectangular Microchannels of Different Aspect Ratios
,”
Int. J. Heat Mass Transfer
,
49
(
17–19
), pp.
3060
3067
.10.1016/j.ijheatmasstransfer.2006.02.011
25.
Fedorov
,
A. G.
, and
Viskanta
,
R.
,
2000
, “
Three-Dimensional Conjugated Heat Transfer in the Micro-Channel Heat Sink for Electronic Packaging
,”
Int. J. Heat Mass Transfer
,
43
(
3
), pp.
399
415
.10.1016/S0017-9310(99)00151-9
26.
Qu
,
W.
, and
Mudawar
,
I.
,
2002
, “
Analysis of Three-Dimensional Heat Transfer in Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
45
(
19
), pp.
3973
3985
.10.1016/S0017-9310(02)00101-1
27.
Rusu
,
S.
,
Tam
,
S.
,
Muljono
,
H.
,
Ayers
,
D.
, and
Chang
,
J.
,
2006
, “
A Dual-Core Multi-Threaded Xeon Processor With 16MB L3 Cache
,”
IEEE International Solid-State Circuits Conference
(
ISSCC 2006
), San Francisco, CA, February 6–9, pp.
315
324
.10.1109/ISSCC.2006.1696062
28.
Rusu
,
S.
,
Tam
,
S.
,
Muljono
,
H.
,
Ayers
,
D.
,
Chang
,
J.
,
Cherkauer
,
B.
, and
Vora
,
S.
,
2007
, “
A 65-nm Dual-Core Multithreaded Xeon® Processor With 16-MB L3 Cache
,”
IEEE J. Solid-State Circuits
,
42
(
1
), pp.
17
25
.10.1109/JSSC.2006.885041
29.
Stackhouse
,
B.
,
Bhimji
,
S.
,
Bostak
,
C.
,
Bradley
,
D.
,
Cherkauer
,
B.
,
Desai
,
J.
, and
Troyer
,
S.
,
2009
, “
A 65 nm 2-Billion Transistor Quad-Core Itanium Processor
,”
IEEE J. Solid-State Circuits
,
44
(
1
), pp.
18
31
.10.1109/JSSC.2008.2007150
30.
Rusu
,
S.
,
Tam
,
S.
,
Muljono
,
H.
,
Stinson
,
J.
,
Ayers
,
D.
,
Chang
,
J.
, and
Vora
,
S.
,
2010
, “
A 45 nm 8-Core Enterprise Xeon Processor
,”
IEEE J. Solid-State Circuits
,
45
(
1
), pp.
7
14
.10.1109/JSSC.2009.2034076
31.
Lee
,
J.
, and
Mudawar
,
I.
,
2008
, “
Low-Temperature Two-Phase Micro-Channel Cooling for High-Heat-Flux Thermal Management of Defense Electronics
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
32
(
2
), pp.
453
465
.10.1109/TCAPT.2008.2005783
32.
3M, 2002, “3M NovecTM Engineered Fluid HFE-7100 for Heat Transfer
,” data sheet, 3M, St. Paul, MN.
33.
Husain
,
A.
, and
Kim
,
K. Y.
,
2008
, “
Shape Optimization of Micro-Channel Heat Sink for Micro-Electronic Cooling
,”
IEEE Trans. Compon. Packag. Technol.
,
31
(
2
), pp.
322
330
.10.1109/TCAPT.2008.916791
34.
Narayan
,
V.
, and
Yao
,
S. C.
,
2011
, “
Modeling and Optimization of Micro-Channel Heat Sinks for the Cooling of 3D Stacked Integrated Circuits
,”
ASME
Paper No. IMECE2011-62306. 10.1115/IMECE2011-62306
35.
Liu
,
D.
, and
Garimella
,
S. V.
,
2005
, “
Analysis and Optimization of the Thermal Performance of Microchannel Heat Sinks
,”
Int. J. Numer. Methods Heat Fluid Flow
,
15
(
1
), pp.
7
26
.10.1108/09615530510571921
You do not currently have access to this content.