An entropy generation minimization method is applied to study the thermodynamic losses caused by heat transfer and pressure drop for the fluid in a cylindrical pin-fin heat sink and bypass flow regions. A general expression for the entropy generation rate is obtained by considering control volumes around the heat sink and bypass regions. The conservation equations for mass and energy with the entropy balance are applied in both regions. Inside the heat sink, analytical/empirical correlations are used for heat transfer coefficients and friction factors, where the reference velocity used in the Reynolds number and the pressure drop is based on the minimum free area available for the fluid flow. In bypass regions theoretical models, based on laws of conservation of mass, momentum, and energy, are used to predict flow velocity and pressure drop. Both in-line and staggered arrangements are studied and their relative performance is compared to the same thermal and hydraulic conditions. A parametric study is also performed to show the effects of bypass on the overall performance of heat sinks.

1.
Lei
,
N.
, and
Ortega
,
A.
, 2004, “
Experimental Hydraulic Characterization of Pin Fin Heat Sinks With Top and Side Bypass
,”
9th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
,
Las Vegas, NV
, Jun. 1–4, Vol.
1
, pp.
418
428
.
2.
Urdaneta
,
M.
,
Ortega
,
A.
, and
Westphal
,
R. V.
, 2003, “
Experiments and Modeling of the Hydraulic Resistance of In-Line Square Pin Fin Heat Sinks With Top Bypass Flow
,”
Advances in Electronic Packaging International Electronic Packaging Technical Conference and Exhibition
,
Maui, HI
, Jul. 6–11, Vol.
2
, pp.
587
596
.
3.
Urdaneta
,
M.
, and
Ortega
,
A.
, 2003, “
Experiments and Modeling of the Thermal Resistance of In-Line Square Pin-Fin Heat Sinks With Top Bypass Flow
,”
Advances in Electronic Packaging International Electronic Packaging Technical Conference and Exhibition
,
Maui, HI
, Jul. 6–11, Vol.
2
, pp.
597
604
.
4.
Dogruoz
,
M. B.
,
Urdaneta
,
M.
, and
Ortega
,
A.
, 2002, “
Experiments and Modeling of the Heat Transfer of In-Line Square Pin-Fin Heat Sinks With Top Bypass Flow
,”
American Society of Mechanical Engineers, Heat Transfer Division, ASME International Mechanical Engineering Congress and Exposition
,
New Orleans, LA
, Nov. 17–22, Vol.
372
, pp.
195
206
.
5.
Shaukatullah
,
H.
,
Storr
,
W. R.
,
Hansen
,
B. J.
, and
Gaynes
,
M. A.
, 1996, “
Design and Optimization of Pin Fin Heat Sinks for Low Velocity Applications
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
1070-9886,
19
(
4
), pp.
486
494
.
6.
Rizzi
,
M.
, and
Catton
,
I.
, 2003, “
An Experimental Study of Pin Fin Heat Sinks and Determination of End Wall Heat Transfer
,”
Proceedings of the ASME Summer Heat Transfer Conference
,
Las Vegas, NV
, Jul. 21–23, Vol.
2003
, pp.
445
452
.
7.
Rizzi
,
M.
,
Canino
,
M.
,
Hu
,
K.
,
Jones
,
S.
,
Travkin
,
V.
, and
Catton
,
I.
, 2001, “
Experimental Investigation of Pin Fin Heat Sink Effectiveness
,”
Proceedings of the National Heat Transfer Conference
,
Anaheim, CA
, Jun. 10–12, Vol.
2
, pp.
1235
1243
.
8.
Jonsson
,
H.
, and
Moshfegh
,
B.
, 2001, “
Modeling of the Thermal and Hydraulic Performance of Plate Fin, Strip Fin, and Pin Fin Heat Sinks—Influence of Flow Bypass
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
24
(
2
), pp.
142
149
.
9.
Jonsson
,
H.
, and
Moshfegh
,
B.
, 2000, “
Modeling of the Thermal and Hydraulic Performance of Plate Fin, Strip Fin, and Pin Fin Heat Sinks—Influence of Flow Bypass
,”
Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm 2000)
,
Las Vegas, NV
, May 23–26, Vol.
1
, pp.
185
192
.
10.
Jonsson
,
H.
, and
Moshfegh
,
B.
, 2002, “
Enhancement of the Cooling Performance of Circular Pin Fin Heat Sinks Under Flow Bypass Conditions, Thermomechanical Phenomena in Electronic Systems
,”
8th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
,
San Diego, CA
, May 30–Jun. 1, pp.
425
432
.
11.
Jonsson
,
H.
, and
Moshfegh
,
B.
, 2001, “
CFD Modeling of the Cooling Performance of Pin Fin Heat Sinks Under Bypass Flow Conditions
,”
Advances in Electronic Packaging, Pacific Rim/International, Intersociety Electronic Packaging Technical/Business Conference and Exhibition
,
Kauai, HI
, Jul. 8–13, Vol.
1
, pp.
393
403
.
12.
Chapman
,
C. L.
,
Lee
,
S.
, and
Schmidt
,
B. L.
, 1994, “
Thermal Performance of an Elliptical Pin Fin Heat Sink
,”
Proceedings of the Tenth IEEE Semiconductor Thermal Measurement and Management Symposium
,
San Jose, CA
, Feb. 1–3 pp.
24
31
.
13.
Bejan
,
A.
, 1996,
Entropy Generation Minimization
,
CRC
,
New York
.
14.
Bejan
,
A.
, 2001, “
Thermodynamic Optimization of Geometry in Engineering Flow Systems
,”
Int. J. Exergy
1742-8297,
1
(
4
), pp.
269
277
.
15.
Bejan
,
A.
, 1978, “
General Criterion for Rating Heat-Exchanger Performance
,”
Int. J. Heat Mass Transfer
0017-9310,
21
, pp.
655
658
.
16.
Bejan
,
A.
, 1996, “
Entropy Generation Minimization: The New Thermodynamics of Finite-Size Devices and Finite-Time Processes
,”
J. Appl. Phys.
0021-8979,
79
(3), pp.
1191
1218
.
17.
Bejan
,
A.
, 2002, “
Fundamentals of Exergy Analysis, Entropy Generation Minimization, and the Generation of Flow Architecture
,”
Int. J. Energy Res.
0363-907X,
26
, pp.
545
565
.
18.
Culham
,
R. J.
, and
Muzychka
,
Y. S.
, 2001, “
Optimization of Plate Fin Heat Sinks Using Entropy Generation Minimization
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
24
(
4
), pp.
159
165
.
19.
Khan
,
W. A.
,
Yovanovich
,
M. M.
, and
Culham
,
J. R.
, 2006, “
Effect of Bypass on Overall Performance of Pin Fin Heat Sinks
,”
9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference
, Hyatt Regency, San Francisco, CA, Jun. 5–8.
20.
Khan
,
W. A.
,
Yovanovich
,
M. M.
, and
Culham
,
J. R.
, 2006, “
Optimization of Microchannel Heat Sinks Using Entropy Generation Minimization Method
,”
Semiconductor Thermal Measurement and Management Symposium
, Intercontinental Hotel, Dallas, TX, Mar. 14–16.
21.
Khan
,
W. A.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
, 2006, “
Optimal Design of Tube Banks in Crossflow Using Entropy Generation Minimization Method
,”
44th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
, Jan. 9–12.
22.
Khan
,
W. A.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
, 2005, “
Optimization of Pin-Fin Heat Sinks Using Entropy Generation Minimization
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
28
(
2
), pp.
247
254
.
23.
Kern
,
D. Q.
, and
Kraus
,
A. D.
, 1972,
Extended Surface Heat Transfer
,
McGraw-Hill
,
New York
.
24.
Sonn
,
A.
, and
Bar-Cohen
,
A.
, 1981, “
Optimum Cylindrical Pin-Fin
,”
ASME J. Heat Transfer
0022-1481,
103
, pp.
814
815
.
25.
Iyengar
,
M.
, and
Bar-Cohen
,
A.
, 1998, “
Least-Material Optimization of Vertical Pin-Fin, Plate-Fin, and Triangular-Fin Heat Sinks in Natural Convective Heat Transfer
,”
Proceedings of the Intersociety Conference on Thermomechanical Phenomena in Electronic Systems (ITHERM)
,
Seattle, WA
, May, pp.
295
302
.
26.
Iyengar
,
M.
, and
Bar-Cohen
,
A.
, 2002, “
Least-Energy Optimization of Forced Convection Plate-Fin Heat Sinks
,”
Proceedings of the Intersociety Conference on Thermomechanical Phenomena in Electronic Systems (ITHERM)
,
San Diego, CA
, May, pp.
792
799
.
27.
Bar-Cohen
,
A.
, and
Jelinek
,
M.
, 1986, “
Optimum Arrays of Longitudinal, Rectangular Fins in Convective Heat Transfer
,”
Heat Transfer Eng.
0145-7632,
6
(
3
), pp.
68
78
.
28.
Khan
,
W. A.
, 2004, “
Modeling of Fluid Flow and Heat Transfer for Optimization of Pin-Fin Heat Sinks
,” Ph.D. thesis, University of Waterloo, Ontario, Canada.
29.
Žukauskas
,
A.
, 1972, “
Heat Transfer From Tubes in Crossflow
,”
Adv. Heat Transfer
0065-2717,
8
, pp.
93
160
.
30.
Stoecker
,
W. F.
, 1989,
Design of Thermal Systems
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.