The catalyst layer (CL) of a proton exchange membrane fuel cell involves various particles and pores that span a wide range of length scales, from several nanometers to a few microns. The success of the CL design depends decisively on understanding the detailed structure in microscale or even in nanoscale. In this paper, the properties of nano-/microstructures are outlined, and the physical and chemical processes are analyzed on the Pt surfaces. A software package of automatic simulation environment is developed and applied to investigate the electronic structure of the Pt–H system. Then, the H2 dissociative adsorption process is obtained using the nudged elastic band approach. The modeling of the nanocomposites in the CLs is a multiscale problem. The nanoscale models are used for investigating the structural evolution and the interactions between Pt/C particles and polymer components; while the microscale simulations, which aim to bridge molecular methods and continuum methods, are extended to describe the morphology of heterogeneous materials and rationalize their effective properties beyond length- and time-scale limitations of the atomistic simulations. However, there are still some major challenges and limitations in these modeling and simulations. The multiscale modeling should be developed to demonstrate the usefulness for engineering design with the longstanding goal of predicting particle-structure-property.

1.
Yan
,
Q.
, and
Wu
,
J.
, 2008, “
Modeling of Single Catalyst Particle in Cathode of PEM Fuel Cells
,”
Energy Convers. Manage.
0196-8904,
49
(
8
), pp.
2425
2433
.
2.
Malek
,
K.
,
Eikerling
,
M.
,
Wang
,
Q.
,
Navessin
,
T.
, and
Liu
,
Z.
, 2007, “
Self-Organization in Catalyst Layers of Polymer Electrolyte Fuel Cells
,”
J. Phys. Chem. C
1932-7447,
111
(
36
), pp.
13627
13634
.
3.
Epping Martin
,
K.
,
Kopasz
,
J. P.
, and
McMurphy
,
K. W.
, 2010, “
Status of Fuel Cells and the Challenges Facing Fuel Cell Technology Today
,”
Fuel Cell Chemistry and Operation
, Vol.
1040
,
American Chemical Society
,
Washington
, pp.
1
13
.
4.
Vojislav
,
R. S.
,
Ben
,
F.
,
Bongjin Simon
,
M.
,
Guofeng
,
W.
,
Philip
,
N. R.
,
Christopher
,
A. L.
, and
Nenad
,
M. M.
, 2007, “
Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability
,”
Science
0036-8075,
315
(
5811
), pp.
493
497
.
5.
Wilson
,
M. S.
, and
Gottesfeld
,
S.
, 1992, “
High Performance Catalyzed Membranes of Ultra-Low Pt Loadings for Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
139
(
2
), pp.
L28
L30
.
6.
Wilson
,
M. S.
,
Valerio
,
J. A.
, and
Gottesfeld
,
S.
, 1995, “
Low Platinum Loading Electrodes for Polymer Electrolyte Fuel Cells Fabricated Using Thermoplastic Ionomers
,”
Electrochim. Acta
0013-4686,
40
(
3
), pp.
355
363
.
7.
Uchida
,
M.
,
Aoyama
,
Y.
,
Eda
,
N.
, and
Ogawa
,
M.
, 1996, “
Solid Polymer Type Fuel Cell and Method for Manufacturing the Same
,”
J. Power Sources
0378-7753,
63
(
2
), p.
285
.
8.
Volfkovich
,
Y. M.
,
Sosenkin
,
V. E.
, and
Bagotsky
,
V. S.
, 2010, “
Structural and Wetting Properties of Fuel Cell Components
,”
J. Power Sources
0378-7753,
195
(
17
), pp.
5429
5441
.
9.
Volfkovich
,
Y. M.
, and
Bagotzky
,
V. S.
, 1994, “
The Method of Standard Porosimetry 2. Investigation of the Formation of Porous Structures
,”
J. Power Sources
0378-7753,
48
(
3
), pp.
339
348
.
10.
Vol’fkovich
,
Y. M.
,
Sosenkin
,
V. E.
, and
Nikol’skaya
,
N. F.
, 2010, “
Porous Structure of the Catalyst Layers of Electrodes in a Proton-Exchange Membrane Fuel Cell: A Stage-by-Stage Study
,”
Russ. J. Electrochem.
1023-1935,
46
(
3
), pp.
336
344
.
11.
Ruska
,
E.
, 1986, “
The Emergence of the Electron Microscope: Connection Between Realization and First Patent Application, Documents of an Invention
,”
J. Ultrastruct Mol. Struct. Res.
0889-1605,
95
(
1–3
), pp.
3
28
.
13.
Zhang
,
J.
,
Liao
,
S.
,
Li
,
B.
, and
Li
,
Y.
, 2008, “
Physical Characterization of Electrocatalysts
,”
PEM Fuel Cell Electrocatalysts and Catalyst Layers
,
Springer
,
London
.
14.
Tian
,
Z. Q.
,
Jiang
,
S. P.
,
Liang
,
Y. M.
, and
Shen
,
P. K.
, 2006, “
Synthesis and Characterization of Platinum Catalysts on Multiwalled Carbon Nanotubes by Intermittent Microwave Irradiation for Fuel Cell Applications
,”
J. Phys. Chem. B
1089-5647,
110
(
11
), pp.
5343
5350
.
15.
Strmcnik
,
D.
,
Gaberscek
,
M.
,
Hocevar
,
S.
, and
Jamnik
,
J.
, 2005, “
The Effect of Halide Ion Impurities and Nafion on Electrooxidation of Co on Platinum
,”
Solid State Ionics
0167-2738,
176
(
19–22
), pp.
1759
1763
.
16.
Shukla
,
A. K.
,
Neergat
,
M.
,
Bera
,
P.
,
Jayaram
,
V.
, and
Hegde
,
M. S.
, 2001, “
An XPS Study on Binary and Ternary Alloys of Transition Metals With Platinized Carbon and Its Bearing Upon Oxygen Electroreduction in Direct Methanol Fuel Cells
,”
J. Electroanal. Chem.
0022-0728,
504
(
1
), pp.
111
119
.
18.
Nashner
,
M. S.
,
Frenkel
,
A. I.
,
Somerville
,
D.
,
Hills
,
C. W.
,
Shapley
,
J. R.
, and
Nuzzo
,
R. G.
, 1998, “
Core Shell Inversion During Nucleation and Growth of Bimetallic Pt/Ru Nanoparticles
,”
J. Am. Chem. Soc.
0002-7863,
120
(
32
), pp.
8093
8101
.
19.
Woo
,
M. H.
,
Kwon
,
O.
,
Choi
,
S. H.
,
Hong
,
M. Z.
,
Ha
,
H. -W.
, and
Kim
,
K.
, 2006, “
Zirconium Phosphate Sulfonated Poly (Fluorinated Arylene Ether)S Composite Membranes for PEMFCs at 100–140°C
,”
Electrochim. Acta
0013-4686,
51
(
27
), pp.
6051
6059
.
20.
Min
,
M.
,
Park
,
C.
,
Kim
,
H.
,
Kwak
,
C.
,
Serov
,
A. A.
,
Kweon
,
H.
, and
Lee
,
S.
, 2006, “
Nano-Fabrication and Characterization of New Conceptual Platinum Catalysts for Low Temperature Fuel Cells
,”
Electrochim. Acta
0013-4686,
52
(
4
), pp.
1670
1675
.
21.
Joo
,
S. H.
,
Pak
,
C.
,
You
,
D. J.
,
Lee
,
S. A.
,
Lee
,
H. I.
,
Kim
,
J. M.
,
Chang
,
H.
, and
Seung
,
D.
, 2006, “
Ordered Mesoporous Carbons (OMC) as Supports of Electrocatalysts for Direct Methanol Fuel Cells (DMFC): Effect of Carbon Precursors of OMC on DMFC Performances
,”
Electrochim. Acta
0013-4686,
52
(
4
), pp.
1618
1626
.
22.
Chirila
,
V.
,
Marginean
,
G.
,
Iclanzan
,
T.
,
Merino
,
C.
, and
Brandl
,
W.
, 2007, “
Method for Modifying Mechanical Properties of Carbon Nano-Fiber Polymeric Composites
,”
Journal of Thermoplastic Composite Materials
,
20
(
3
), pp.
277
289
.
23.
Yin
,
S.
,
Shen
,
P. K.
,
Song
,
S.
, and
Jiang
,
S. P.
, 2009, “
Functionalization of Carbon Nanotubes by an Effective Intermittent Microwave Heating-Assisted Hf/H2O2 Treatment for Electrocatalyst Support of Fuel Cells
,”
Electrochim. Acta
0013-4686,
54
(
27
), pp.
6954
6958
.
24.
Lim
,
D. -H.
,
Lee
,
W. -D.
, and
Lee
,
H. -I.
, 2008, “
Highly Dispersed and Nano-Sized Pt-Based Electrocatalysts for Low-Temperature Fuel Cells
,”
Catalysis Surveys from Asia
,
12
(
4
), pp.
310
325
.
25.
Lim
,
D. H.
,
Lee
,
W. D.
,
Choi
,
D. H.
,
Park
,
D. R.
, and
Lee
,
H. I.
, 2008, “
Preparation of Platinum Nanoparticles on Carbon Black With Mixed Binary Surfactants: Characterization and Evaluation as Anode Catalyst for Low-Temperature Fuel Cell
,”
J. Power Sources
0378-7753,
185
(
1
), pp.
159
165
.
26.
Lim
,
D. H.
,
Lee
,
W. D.
,
Choi
,
D. H.
,
Kwon
,
H. H.
, and
Lee
,
H. I.
, 2008, “
The Effect of Cerium Oxide Nanoparticles on a Pt/C Electrocatalyst Synthesized by a Continuous Two-Step Process for Low-Temperature Fuel Cell
,”
Electrochem. Commun.
1388-2481,
10
(
4
), pp.
592
596
.
27.
Lim
,
D. H.
,
Choi
,
D. H.
,
Lee
,
W. D.
, and
Lee
,
H. I.
, 2009, “
A New Synthesis of a Highly Dispersed and Co Tolerant PtSn/C Electrocatalyst for Low-Temperature Fuel Cell; Its Electrocatalytic Activity and Long-Term Durability
,”
Appl. Catal., B
0926-3373,
89
(
3–4
), pp.
484
493
.
28.
Colmati
,
F.
,
Antolini
,
E.
, and
Gonzalez
,
E. R.
, 2008, “
Effect of Thermal Treatment on Phase Composition and Ethanol Oxidation Activity of a Carbon Supported Pt50Sn50 Alloy Catalyst
,”
J. Solid State Electrochem.
1432-8488,
12
(
5
), pp.
591
599
.
29.
Lim
,
D. -H.
,
Lee
,
W. -D.
, and
Choi
,
D. -H.
, 2010, “
Effect of Ceria Nanoparticles Into the Pt/C Catalyst as Cathode Material on the Electrocatalytic Activity and Durability for Low-Temperature Fuel Cell
,”
Appl. Catal., B
0926-3373,
94
(
1–2
), pp.
85
97
.
30.
Fujigaya
,
T.
,
Okamoto
,
M.
, and
Nakashima
,
N.
, 2009, “
Design of an Assembly of Pyridine-Containing Polybenzimidazole, Carbon Nanotubes and Pt Nanoparticles for a Fuel Cell Electrocatalyst With a High Electrochemically Active Surface Area
,”
Carbon
0008-6223,
47
(
14
), pp.
3227
3232
.
31.
Whitten
,
J. L.
, and
Yang
,
H.
, 1996, “
Theory of Chemisorption and Reactions on Metal Surfaces
,”
Surf. Sci. Rep.
0167-5729,
24
(
3–4
), pp.
55
124
.
32.
Hammer
,
B.
, and
Nørskov
,
J. K.
, 2000, “
Theoretical Surface Science and Catalysis–Calculations and Concepts
,”
Adv. Catal.
0065-2342,
45
, pp.
71
129
.
33.
Shi
,
Z.
, 2008, “
PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications
,”
Application of First Principles Methods in the Study of Fuel Cell Air-Cathode Electrocatalysis
,
Springer-Verlag
,
London
, pp.
289
329
.
34.
Poelsema
,
B.
,
Lenz
,
K.
, and
Comsa
,
G.
, 2010, “
The Dissociative Adsorption of Hydrogen on Defect-‘Free’ Pt(111)
,”
J. Phys.: Condens. Matter
0953-8984,
22
(
30
), p.
304006
.
35.
Olsen
,
R. A.
,
Kroes
,
G. J.
, and
Baerends
,
E. J.
, 1999, “
Atomic and Molecular Hydrogen Interacting With Pt(111)
,”
J. Chem. Phys.
0021-9606,
111
(
24
), pp.
11155
11163
.
36.
Arboleda
,
N. B.
, and
Kasai
,
H.
, 2008, “
Potential Energy Surfaces for H2 Dissociative Adsorption on Pt(111) Surface-Effects of Vacancies
,”
Surf. Interface Anal.
0142-2421,
40
(
6–7
), pp.
1103
1107
.
37.
Arboleda
,
J. N. B.
,
Kasai
,
H.
,
Diño
,
W. A.
, and
Nakanishi
,
H.
, 2006, “
Quantum Dynamics Study on the Interaction of H2 on a Pt(111) Surface
,”
Thin Solid Films
0040-6090,
509
(
1–2
), pp.
227
229
.
38.
Blaylock
,
D. W.
,
Teppei
,
O.
,
William
,
H. G.
, and
Gregory
,
J. O. B.
, 2009, “
Computational Investigation of Thermochemistry and Kinetics of Steam Methane Reforming on Ni(111) Under Realistic Conditions
,”
J. Phys. Chem. C
1932-7447,
113
(
12
), pp.
4898
4908
.
39.
Grimblot
,
J.
,
Luntz
,
A. C.
, and
Fowler
,
D. E.
, 1990, “
Low Temperature Adsorption of O2 on Pt(111)
,”
J. Electron Spectrosc. Relat. Phenom.
0368-2048,
52
, pp.
161
174
.
40.
Steininger
,
H.
,
Lehwald
,
S.
, and
Ibach
,
H.
, 1982, “
Adsorption of Oxygen on Pt(111)
,”
Surf. Sci. Lett.
0167-2584,
123
(
1
), pp.
1
17
.
41.
Mittendorfer
,
F.
,
Eichler
,
A.
, and
Hafner
,
J.
, 1999, “
Molecular Precursors in the Dissociative Adsorption of O2 on Ni(111)
,”
Surf. Sci.
0039-6028,
433–435
, pp.
756
760
.
42.
Groß
,
A.
,
Eichler
,
A.
,
Hafner
,
J.
,
Mehl
,
M. J.
, and
Papaconstantopoulos
,
D. A.
, 2003, “
Unified Picture of the Molecular Adsorption Process: O2/Pt(111)
,”
Surf. Sci.
0039-6028,
539
(
1–3
), pp.
L542
L548
.
43.
Gurney
,
R. W.
, 1931, “
The Quantum Mechanics of Electrolysis
,”
Proc. R. Soc. London, Ser. A
0950-1207,
134
(
823
), pp.
137
154
.
44.
Bockris
,
J. O.
, and
Abdu
,
R.
, 1998, “
A Theoretical Study of the Electrochemical Reduction of Oxygen
,”
J. Electroanal. Chem.
0022-0728,
448
(
2
), pp.
189
204
.
45.
Anderson
,
A. B.
, and
Albu
,
T. V.
, 1999, “
Ab Initio Approach to Calculating Activation Energies as Functions of Electrode Potential Trial Application to Four-Electron Reduction of Oxygen
,”
Electrochem. Commun.
1388-2481,
1
(
6
), pp.
203
206
.
46.
Anderson
,
A. B.
, and
Albu
,
T. V.
, 1999, “
Ab Initio Determination of Reversible Potentials and Activation Energies for Outer-Sphere Oxygen Reduction to Water and the Reverse Oxidation Reaction
,”
J. Am. Chem. Soc.
0002-7863,
121
(
50
), pp.
11855
11863
.
47.
Anderson
,
A. B.
,
Roques
,
J.
,
Mukerjee
,
S.
,
Murthi
,
V. S.
,
Markovic
,
N. M.
, and
Stamenkovic
,
V.
, 2005, “
Activation Energies for Oxygen Reduction on Platinum Alloys: Theory and Experiment
,”
J. Phys. Chem. B
1089-5647,
109
(
3
), pp.
1198
1203
.
48.
Wang
,
Y.
, and
Balbuena
,
P. B.
, 2004, “
Roles of Proton and Electric Field in the Electroreduction of O2 on Pt(111) Surfaces: Results of an Ab-Initio Molecular Dynamics Study
,”
J. Phys. Chem. B
1089-5647,
108
(
14
), pp.
4376
4384
.
49.
Jinnouchi
,
R.
, 2003, “
New Insight Into Microscale Transport Phenomena in PEFC by Quantum MD
,”
Microscale Thermophys. Eng.
1089-3954,
7
(
1
), pp.
15
31
.
50.
Hyman
,
M. P.
, and
Medlin
,
J. W.
, 2006, “
Mechanistic Study of the Electrochemical Oxygen Reduction Reaction on Pt(111) Using Density Functional Theory
,”
J. Phys. Chem. B
1089-5647,
110
(
31
), pp.
15338
15344
.
51.
Nørskov
,
J. K.
,
Rossmeisl
,
J.
,
Logadottir
,
A.
,
Lindqvist
,
L.
,
Kitchin
,
J. R.
,
Bligaard
,
T.
, and
Jónsson
,
H.
, 2004, “
Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode
,”
J. Phys. Chem. B
1089-5647,
108
(
46
), pp.
17886
17892
.
52.
Carrette
,
L.
,
Friedrich
,
K. A.
, and
Stimming
,
U.
, 2001, “
Fuel Cells—Fundamentals and Applications
,”
Fuel Cells
0532-7822,
1
(
1
), pp.
5
39
.
53.
Pitois
,
A.
,
Pilenga
,
A.
, and
Tsotridis
,
G.
, 2010, “
Co Desorption Kinetics at Concentrations and Temperatures Relevant to PEM Fuel Cells Operating With Reformate Gas and PtRu/C Anodes
,”
Appl. Catal., A
0926-860X,
374
(
1–2
), pp.
95
102
.
54.
Hayden
,
B. E.
,
Rendall
,
M. E.
, and
South
,
O.
, 2003, “
Electro-Oxidation of Carbon Monoxide on Well-Ordered Pt(111)/Sn Surface Alloys
,”
J. Am. Chem. Soc.
0002-7863,
125
(
25
), pp.
7738
7742
.
55.
Markovic
,
N. M.
, and
Ross
,
P. N.
, 2002, “
Surface Science Studies of Model Fuel Cell Electrocatalysts
,”
Surf. Sci. Rep.
0167-5729,
45
(
4–6
), pp.
117
229
.
56.
Adzic
,
R.
, 1998, “
Recent Advances in the Kinetics of Oxygen Reduction
,”
Electrocatalysis
,
Wiley-VCH
,
New York
, pp.
197
242
.
57.
Sepa
,
D. B.
,
Vojnovic
,
M. V.
, and
Damjanovic
,
A.
, 1981, “
Reaction Intermediates as a Controlling Factor in the Kinetics and Mechanism of Oxygen Reduction at Platinum Electrodes
,”
Electrochim. Acta
0013-4686,
26
(
6
), pp.
781
793
.
58.
Zhang
,
J.
,
Tang
,
Y.
,
Song
,
C.
,
Zhang
,
J.
, and
Wang
,
H.
, 2006, “
PEM Fuel Cell Open Circuit Voltage (OCV) in the Temperature Range of 23°C to 120°C
,”
J. Power Sources
0378-7753,
163
(
1
), pp.
532
537
.
59.
Allen
,
M. P.
, and
Tildesley
,
D. J.
, 1989,
Computer Simulation of Liquids
,
Oxford University Press
,
New York
.
60.
Tang
,
L.
,
Han
,
B.
, and
Persson
,
K.
, 2010, “
Electrochemical Stability of Nanometer-Scale Pt Particles in Acidic Environments
,”
J. Am. Chem. Soc.
0002-7863,
132
(
2
), pp.
596
600
.
61.
Vishnyakov
,
A.
, and
Neimark
,
A. V.
, 2000, “
Molecular Simulation Study of Nafion Membrane Solvation in Water and Methanol
,”
J. Phys. Chem. B
1089-5647,
104
(
18
), pp.
4471
4478
.
62.
Spohr
,
E.
,
Commer
,
P.
, and
Kornyshev
,
A. A.
, 2002, “
Enhancing Proton Mobility in Polymer Electrolyte Membranes: Lessons From Molecular Dynamics Simulations
,”
J. Phys. Chem. B
1089-5647,
106
(
41
), pp.
10560
10569
.
63.
Devanathan
,
R.
,
Venkatnathan
,
A.
, and
Dupuis
,
M.
, 2007, “
Atomistic Simulation of Nafion Membrane: I. Effect of Hydration on Membrane Nanostructure
,”
J. Phys. Chem. B
1089-5647,
111
(
28
), pp.
8069
8079
.
64.
Devanathan
,
R.
,
Venkatnathan
,
A.
, and
Dupuis
,
M.
, 2007, “
Atomistic Simulation of Nafion Membrane. 2. Dynamics of Water Molecules and Hydronium Ions
,”
J. Phys. Chem. B
1089-5647,
111
(
45
), pp.
13006
13013
.
65.
Komarov
,
P. V.
,
Veselov
,
I. N.
,
Chu
,
P. P.
,
Khalatur
,
P. G.
, and
Khokhlov
,
A. R.
, 2010, “
Atomistic and Mesoscale Simulation of Polymer Electrolyte Membranes Based on Sulfonated Poly(Ether Ether Ketone)
,”
Chem. Phys. Lett.
0009-2614,
487
(
4–6
), pp.
291
296
.
66.
Hao
,
X.
,
Spieker
,
W. A.
, and
Regalbuto
,
J. R.
, 2003, “
A Further Simplification of the Revised Physical Adsorption (RPA) Model
,”
J. Colloid Interface Sci.
0021-9797,
267
(
2
), pp.
259
264
.
67.
Ping
,
S. -P.
, and
Balbuena
,
P. B.
, 2002, “
Platinum Nanoclusters on Graphite Substrates: A Molecular Dynamics Study
,”
Mol. Phys.
0026-8976,
100
(
13
), pp.
2165
2174
.
68.
Lamas
,
E. J.
, and
Balbuena
,
P. B.
, 2003, “
Adsorbate Effects on Structure and Shape of Supported Nanoclusters: A Molecular Dynamics Study
,”
J. Phys. Chem. B
1089-5647,
107
(
42
), pp.
11682
11689
.
69.
Chen
,
J.
, and
Chan
,
K. -Y.
, 2005, “
Size-Dependent Mobility of Platinum Cluster on a Graphite Surface
,”
Mol. Simul.
0892-7022,
31
(
6–7
), pp.
527
533
.
70.
Lamas
,
E. J.
, and
Balbuena
,
P. B.
, 2006, “
Molecular Dynamics Studies of a Model Polymer-Catalyst-Carbon Interface
,”
Electrochim. Acta
0013-4686,
51
(
26
), pp.
5904
5911
.
71.
Balbuena
,
P. B.
,
Lamas
,
E. J.
, and
Wang
,
Y.
, 2005, “
Molecular Modeling Studies of Polymer Electrolytes for Power Sources
,”
Electrochim. Acta
0013-4686,
50
(
19
), pp.
3788
3795
.
72.
Rafii-Tabar
,
H.
,
Shodja
,
H. M.
,
Darabi
,
M.
, and
Dahi
,
A.
, 2006, “
Molecular Dynamics Simulation of Crack Propagation in FCC Materials Containing Clusters of Impurities
,”
Mech. Mater.
0167-6636,
38
(
3
), pp.
243
252
.
73.
Morrow
,
B. H.
, and
Striolo
,
A.
, 2007, “
Morphology and Diffusion Mechanism of Platinum Nanoparticles on Carbon Nanotube Bundles
,”
J. Phys. Chem. C
1932-7447,
111
(
48
), pp.
17905
17913
.
74.
Eisenberg
,
A.
, and
Takahashi
,
K.
, 1970, “
Viscoelasticity of Silicate Polymers and Its Structural Implications
,”
J. Non-Cryst. Solids
0022-3093,
3
(
3
), pp.
279
293
.
75.
Hsu
,
W. Y.
, and
Gierke
,
T. D.
, 1983, “
Ion Transport and Clustering in Nafion Perfluorinated Membranes
,”
J. Membr. Sci.
0376-7388,
13
(
3
), pp.
307
326
.
76.
Zeng
,
Q. H.
,
Yu
,
A. B.
, and
Lu
,
G. Q.
, 2008, “
Multiscale Modeling and Simulation of Polymer Nanocomposites
,”
Prog. Polym. Sci.
0079-6700,
33
(
2
), pp.
191
269
.
77.
Hohenberg
,
P.
, and
Kohn
,
W.
, 1964, “
Inhomogeneous Electron Gas
,”
Phys. Rev.
0031-899X,
136
, pp.
B864
B871
.
78.
Baerends
,
E. J.
, 2000, “
Perspective on ‘Self-Consistent Equations Including Exchange and Correlation Effects—Kohn, W., Sham, L. J. (1965) Phys. Rev. A, 140: 1133–1138,’ Theoretical Chemistry Accounts: Theory, Computation, and Modeling
,”
Theor. Chim. Acta
0040-5744,
103
(
3–4
), pp.
265
269
.
79.
Blair
,
D. G.
, 1967, “
Local-Density Approximation for Electron Eigenstates in a One-Dimensional Liquid Model
,”
Proc. Phys. Soc.
,
91
(
3
), pp.
736
738
.
80.
Constantin
,
L. A.
,
Perdew
,
J. P.
, and
Pitarke
,
J. M.
, 2009, “
Exchange-Correlation Hole of a Generalized Gradient Approximation for Solids and Surfaces
,”
Phys. Rev. B
0556-2805,
79
, p.
075126
.
81.
Xiao
,
L.
, and
Wang
,
L.
, 2004, “
Structures of Platinum Clusters: Planar or Spherical?
,”
J. Phys. Chem. A
1089-5639,
108
(
41
), pp.
8605
8614
.
82.
Okazaki-Maeda
,
K.
,
Morikawa
,
Y.
,
Tanaka
,
S.
, and
Kohyama
,
M.
, 2010, “
Structures of Pt Clusters on Graphene by First-Principles Calculations
,”
Surf. Sci.
0039-6028,
604
(
2
), pp.
144
154
.
83.
Metropolis
,
N.
,
Rosenbluth
,
A. W.
,
Rosenbluth
,
M. N.
,
Teller
,
A. H.
, and
Teller
,
E.
, 1953, “
Equation of State Calculations by Fast Computing Machines
,”
J. Chem. Phys.
0021-9606,
21
(
6
), pp.
1087
1092
.
84.
Wei
,
Z. D.
,
Ran
,
H. B.
,
Liu
,
X. A.
,
Liu
,
Y.
,
Sun
,
C. X.
,
Chan
,
S. H.
, and
Shen
,
P. K.
, 2006, “
Numerical Analysis of Pt Utilization in PEMFC Catalyst Layer Using Random Cluster Model
,”
Electrochim. Acta
0013-4686,
51
(
15
), pp.
3091
3096
.
85.
Meng
,
B.
, and
Weinberg
,
W. H.
, 1996, “
Dynamical Monte Carlo Studies of Molecular Beam Epitaxial Growth Models: Interfacial Scaling and Morphology
,”
Surf. Sci.
0039-6028,
364
(
2
), pp.
151
163
.
86.
Rai
,
V.
,
Aryanpour
,
M.
, and
Pitsch
,
H.
, 2008, “
First-Principles Analysis of Oxygen-Containing Adsorbates Formed From the Electrochemical Discharge of Water on Pt(111)
,”
J. Phys. Chem. C
1932-7447,
112
(
26
), pp.
9760
9768
.
87.
Kissel-Osterrieder
,
R.
,
Behrendt
,
F.
, and
Warnatz
,
J.
, 2000, “
Dynamic Monte Carlo Simulations of Catalytic Surface Reactions
,”
Proc. Combust. Inst.
1540-7489,
28
(
1
), pp.
1323
1330
.
88.
Modak
,
A. U.
, and
Lusk
,
M. T.
, 2005, “
Kinetic Monte Carlo Simulation of a Solid-Oxide Fuel Cell: I. Open-Circuit Voltage and Double Layer Structure
,”
Solid State Ionics
0167-2738,
176
(
29–30
), pp.
2181
2191
.
89.
Wang
,
X.
,
Lau
,
K. C.
,
Turner
,
C. H.
, and
Dunlap
,
B. I.
, 2010, “
Kinetic Monte Carlo Simulation of the Elementary Electrochemistry in a Hydrogen-Powered Solid Oxide Fuel Cell
,”
J. Power Sources
0378-7753,
195
(
13
), pp.
4177
4184
.
90.
Lau
,
K. C.
,
Turner
,
C. H.
, and
Dunlap
,
B. I.
, 2008, “
Kinetic Monte Carlo Simulation of the Yttria Stabilized Zirconia (YSZ) Fuel Cell Cathode
,”
Solid State Ionics
0167-2738,
179
(
33–34
), pp.
1912
1920
.
91.
Hoogerbrugge
,
P. J.
, and
Koelman
,
J. M. V. A.
, 1992, “
Simulating Microscopic Hydrodynamic Phenomena With Dissipative Particle Dynamics
,”
Europhys. Lett.
0295-5075,
19
(
3
), pp.
155
160
.
92.
Español
,
P.
, 1997, “
Dissipative Particle Dynamics With Energy Conservation
,”
Europhys. Lett.
0295-5075,
40
(
6
), pp.
631
636
.
93.
Wu
,
D.
,
Paddison
,
S. J.
, and
Elliott
,
J. A.
, 2009, “
Effect of Molecular Weight on Hydrated Morphologies of the Short-Side-Chain Perfluorosulfonic Acid Membrane
,”
Macromolecules
0024-9297,
42
(
9
), pp.
3358
3367
.
94.
Dorenbos
,
G.
, and
Suga
,
Y.
, 2009, “
Simulation of Equivalent Weight Dependence of Nafion Morphologies and Predicted Trends Regarding Water Diffusion
,”
J. Membr. Sci.
0376-7388,
330
(
1–2
), pp.
5
20
.
95.
Yamamoto
,
S.
,
Maruyama
,
Y.
, and
Hyodo
,
S. -A.
, 2002, “
Dissipative Particle Dynamics Study of Spontaneous Vesicle Formation of Amphiphilic Molecules
,”
J. Chem. Phys.
0021-9606,
116
(
13
), pp.
5842
5849
.
96.
Pivovar
,
A. M.
, and
Pivovar
,
B. S.
, 2005, “
Dynamic Behavior of Water Within a Polymer Electrolyte Fuel Cell Membrane at Low Hydration Levels
,”
J. Phys. Chem. B
1089-5647,
109
(
2
), pp.
785
793
.
97.
Lim
,
C. Y.
,
Shu
,
C.
,
Niu
,
X. D.
, and
Chew
,
Y. T.
, 2002, “
Application of Lattice Boltzmann Method to Simulate Microchannel Flows
,”
Phys. Fluids
1070-6631,
14
(
7
), pp.
2299
2308
.
98.
Ramanathan
,
S.
, and
Koch
,
D. L.
, 2009, “
An Efficient Direct Simulation Monte Carlo Method for Low Mach Number Noncontinuum Gas Flows Based on the Bhatnagar-Gross-Krook Model
,”
Phys. Fluids
1070-6631,
21
(
3
), p.
033103
.
99.
Grew
,
K. N.
,
Joshi
,
A. S.
, and
Peracchio
,
A. A.
, 2010, “
Pore-Scale Investigation of Mass Transport and Electrochemistry in a Solid Oxide Fuel Cell Anode
,”
J. Power Sources
0378-7753,
195
(
8
), pp.
2331
2345
.
100.
Mukherjee
,
P. P.
,
Wang
,
C. Y.
, and
Kang
,
Q.
, 2009, “
Mesoscopic Modeling of Two-Phase Behavior and Flooding Phenomena in Polymer Electrolyte Fuel Cells
,”
Electrochim. Acta
0013-4686,
54
(
27
), pp.
6861
6875
.
101.
Zhou
,
P.
, and
Wu
,
C. W.
, 2010, “
Liquid Water Transport Mechanism in the Gas Diffusion Layer
,”
J. Power Sources
0378-7753,
195
(
5
), pp.
1408
1415
.
102.
Hao
,
L.
, and
Cheng
,
P.
, 2010, “
Lattice Boltzmann Simulations of Water Transport in Gas Diffusion Layer of a Polymer Electrolyte Membrane Fuel Cell
,”
J. Power Sources
0378-7753,
195
(
12
), pp.
3870
3881
.
103.
Varnik
,
F.
, and
Binder
,
K.
, 2009, “
Multiscale Modeling of Polymers at Interfaces
,”
Int. J. Mater. Res.
1862-5282,
100
, pp.
1494
1502
.
104.
Ng
,
T. Y.
,
Yeak
,
S. H.
, and
Liew
,
K. M.
, 2008, “
Coupling of Ab Initio Density Functional Theory and Molecular Dynamics for the Multiscale Modeling of Carbon Nanotubes
,”
Nanotechnology
0957-4484,
19
(
5
), p.
055702
.
105.
Maiti
,
A.
, 2008, “
Multiscale Modeling With Carbon Nanotubes
,”
Microelectron. J.
0026-2692,
39
(
2
), pp.
208
221
.
You do not currently have access to this content.