A 100 MW-class planar solid oxide fuel cell synchronous gas turbine hybrid system has been designed, modeled, and controlled. The system is built of 70 functional fuel cell modules, each containing 10 fuel cell stacks, a blower to recirculate depleted cathode air, a depleted fuel oxidizer, and a cathode inlet air recuperator with bypass. The recuperator bypass serves to control the cathode inlet air temperature, while the variable speed cathode blower recirculates air to control the cathode air inlet temperature. This allows for excellent fuel cell thermal management without independent control of the gas turbine, which at this scale will most likely be a synchronous generator. In concept the demonstrated modular design makes it possible to vary the number of cells controlled by each fuel valve, power electronics module, and recirculation blower, so that actuators can adjust to variations in the hundreds of thousands of fuel cells contained within the 100 MW hybrid system for improved control and reliability. In addition, the modular design makes it possible to take individual fuel cell modules offline for maintenance while the overall system continues to operate. Parametric steady-state design analyses conducted on the system reveal that the overall fuel-to-electricity conversion efficiency of the current system increases with increased cathode exhaust recirculation. To evaluate and demonstrate the conceptualized design, the fully integrated system was modeled dynamically in MATLAB-SIMULINK®. Simple proportional feedback with steady-state feed-forward controls for power tracking, thermal management, and stable gas turbine operation were developed for the system. Simulations of the fully controlled system indicate that the system has a high efficiency over a large range of operating conditions, decent transient load following capability, fuel and ambient temperature disturbance rejection, and the capability to operate with a varying number of fuel cell modules. The efforts here build on prior work and combine the efforts of system design, system operation, component performance characterization, and control to demonstrate hybrid transient capability in large-scale coal synthesis gas-based applications through simulation. Furthermore, the use of a modular fuel cell system design, the use of blower recirculation, and the need for integrated system controls are verified.

1.
Williams
,
M. C.
,
Strakey
,
J. P.
,
Surdoval
,
W. A.
, and
Wilson
,
L. C.
, 2006, “
Solid Oxide Fuel Cell Technology Development in the U.S.
,”
Solid State Ionics
0167-2738,
177
(
19–25
), pp.
2039
2044
.
2.
Williams
,
M. C.
,
Strakey
,
J.
, and
Sudoval
,
W.
, 2006, “
U.S. DOE Fossil Energy Fuel Cells Program
,”
J. Power Sources
0378-7753,
159
(
2
), pp.
1241
1247
.
3.
Williams
,
M. C.
,
Strakey
,
J. P.
, and
Singhal
,
S. C.
, 2004, “
U.S. Distributed Generation Fuel Cell Program
,”
J. Power Sources
0378-7753,
131
(
1–2
), pp.
79
85
.
4.
Williams
,
M. C.
,
Strakey
,
J. P.
, and
Surdoval
,
W. A.
, 2005, “
The U.S. Department of Energy, Office of Fossil Energy Stationary Fuel Cell Program
,”
J. Power Sources
0378-7753,
143
(
1–2
), pp.
191
196
.
5.
2007, “
SECA Wraps First Phase With SOFCs on Way to Commercial Reality
,”
Fuel Cells Bull.
1464-2859,
2007
(
7
), p.
4
.
6.
2007, “
Siemens SOFC System Exceeds DOE Objectives
,”
Fuel Cells Bull.
1464-2859,
2007
(
1
), pp.
5
6
.
7.
Tarroja
,
B.
,
Mueller
,
F.
,
Maclay
,
J.
,
Brouwer
,
J.
, 2008,
Parametric Thermodynamic Analysis of a Pure Hydrogen Solid Oxide Fuel Cell Gas Turbine Hybrid System Design Space
, Berlin, Germany,
ASME
,
New York
, pp.
1
12
.
8.
Mueller
,
F.
, 2005, “
Design and Simulation of a Tubular Solid Oxide Fuel Cell System Control Strategy
,” Masters thesis, Department of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, CA.
9.
Mueller
,
F.
,
Brouwer
,
J.
,
Jabbari
,
F.
, and
Samuelsen
,
S.
, 2006, “
Dynamic Simulation of an Integrated Solid Oxide Fuel Cell System Including Current-Based Fuel Flow Control
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
3
(
2
), pp.
144
155
.
10.
Mueller
,
F.
,
Brouwer
,
J.
,
Kang
,
S.
,
Kim
,
H.-S.
, and
Min
,
K.
, 2007, “
Quasi-Three Dimensional Dynamic Model of a Proton Exchange Membrane Fuel Cell for System and Controls Development
,”
J. Power Sources
0378-7753,
163
(
2
), pp.
814
829
.
11.
Mueller
,
F.
,
Jabbari
,
F.
,
Brouwer
,
J.
,
Roberts
,
R.
,
Junker
,
T.
, and
Ghezel-Ayagh
,
H.
, 2007, “
Control Design for a Bottoming Solid Oxide Fuel Cell Gas Turbine Hybrid System
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
4
, pp.
221
230
.
12.
Mueller
,
F.
,
Jabbari
,
F.
,
Gaynor
,
R.
, and
Brouwer
,
J.
, 2007, “
Novel Solid Oxide Fuel Cell System Controller for Rapid Load Following
,”
J. Power Sources
0378-7753,
172
(
1
), pp.
308
323
.
13.
Brouwer
,
J.
,
Jabbari
,
F.
,
Leal
,
E. M.
, and
Orr
,
T.
, 2006, “
Analysis of a Molten Carbonate Fuel Cell: Numerical Modeling and Experimental Validation
,”
J. Power Sources
0378-7753,
158
(
1
), pp.
213
224
.
14.
Verma
,
A.
,
Rao
,
A. D.
, and
Samuelsen
,
G. S.
, 2006, “
Sensitivity Analysis of a Vision 21 Coal Based Zero Emission Power Plant
,”
J. Power Sources
0378-7753,
158
(
1
), pp.
417
427
.
15.
Chan
,
S. H.
,
Ho
,
H. K.
, and
Tian
,
Y.
, 2003, “
Modelling for Part-Load Operation of Solid Oxide Fuel Cell-Gas Turbine Hybrid Power Plant
,”
J. Power Sources
0378-7753,
114
(
2
), pp.
213
227
.
16.
Costamagna
,
P.
,
Magistri
,
L.
, and
Massardo
,
A. F.
, 2001, “
Design and Part-Load Performance of a Hybrid System Based on a Solid Oxide Fuel Cell Reactor and a Micro Gas Turbine
,”
J. Power Sources
0378-7753,
96
(
2
), pp.
352
368
.
17.
Rao
,
A. D.
, and
Samuelsen
,
G. S.
, 2003, “
A Thermodynamic Analysis of Tubular Solid Oxide Fuel Cell Based Hybrid Systems
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
125
, pp.
59
66
.
18.
Roberts
,
R.
, and
Brouwer
,
J.
, 2006, “
Dynamic Simulation of a Pressurized 220 kW Solid Oxide Fuel-Cell–Gas-Turbine Hybrid System: Modeled Performance Compared to Measured Results
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
3
(
1
), pp.
18
25
.
19.
Zhang
,
X.
,
Li
,
J.
,
Li
,
G.
, and
Feng
,
Z.
, 2007, “
Cycle Analysis of an Integrated Solid Oxide Fuel Cell and Recuperative Gas Turbine With an Air Reheating System
,”
J. Power Sources
0378-7753,
164
(
2
), pp.
752
760
.
20.
Kuchonthara
,
P.
,
Bhattacharya
,
S.
, and
Tsutsumi
,
A.
, 2003, “
Energy Recuperation in Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) Combined System
,”
J. Power Sources
0378-7753,
117
(
1–2
), pp.
7
13
.
21.
Kuchonthara
,
P.
,
Bhattacharya
,
S.
, and
Tsutsumi
,
A.
, 2005, “
Combination of Thermochemical Recuperative Coal Gasification Cycle and Fuel Cell for Power Generation
,”
Fuel
0016-2361,
84
(
7–8
), pp.
1019
1021
.
22.
Bessette
,
N. F.
, 1994, “
Modeling and Simulation for Solid Oxide Fuel Cell Power Systems
,” Doctorate thesis, Georgia Institute of Technology, Atlanta, GA.
23.
Burt
,
A. C.
,
Celik
,
I. B.
,
Gemmen
,
R. S.
, and
Smirnov
,
A. V.
, , 2004, “
A Numerical Study of Cell-to-Cell Variations in a SOFC Stack
,”
J. Power Sources
0378-7753,
126
(
1–2
), pp.
76
87
.
24.
Costamagna
,
P.
,
Costa
,
P.
, and
Antonucci
,
V.
, 1998, “
Micro-Modelling of Solid Oxide Fuel Cell Electrodes
,”
Electrochim. Acta
0013-4686,
43
(
3–4
), pp.
375
394
.
25.
Ferrari
,
M. L.
,
Traverso
,
A.
,
Magistri
,
L.
, and
Massardo
,
A. F.
, 2005, “
Influence of the Anodic Recirculation Transient Behaviour on the SOFC Hybrid System Performance
,”
J. Power Sources
0378-7753,
149
, pp.
22
32
.
26.
Marsano
,
F.
,
Magistri
,
L.
, and
Massardo
,
A. F.
, 2004, “
Ejector Performance Influence on a Solid Oxide Fuel Cell Anodic Recirculation System
,”
J. Power Sources
0378-7753,
129
(
2
), pp.
216
228
.
27.
Nakajo
,
A.
,
Stiller
,
C.
,
Harkegard
,
G.
, and
Bolland
,
O.
, 2006, “
Modeling of Thermal Stresses and Probability of Survival of Tubular SOFC
,”
J. Power Sources
0378-7753,
158
(
1
), pp.
287
294
.
28.
Tucker
,
D.
,
Lawson
,
L.
, and
Gemmen
,
R.
, 2005, “
Characterization of Air Flow Management and Control in a Fuel Cell Turbine Hybrid Power System Using Hardware Simulation
,”
ASME Power Conference
, Chicago, IL,
ASME
,
New York
.
29.
Ferrari
,
M. L.
, et al.
, 2005, “
Control System for Solid Oxide Fuel Cell Hybrid Systems
,”
ASME Turbo Expo 2005: Power for Land, Sea and Air
, Reno-Tahoe, NV,
ASME
,
New York
, pp.
1
9
.
30.
Gaynor
,
R.
,
Mueller
,
F.
,
Jabbari
,
F.
, and
Brouwer
,
J.
, 2008, “
On Control Concepts to Prevent Hydrogen Starvation in Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
180
(
1
), pp.
330
342
.
31.
Haynes
,
C.
, 2002, “
Simulating Process Settings for Unslaved SOFC Response to Increases in Load Demand
,”
J. Power Sources
0378-7753,
109
(
2
), pp.
365
376
.
32.
Inui
,
Y.
,
Ito
,
N.
,
Nakajima
,
T.
, and
Urata
,
A.
, 2006, “
Analytical Investigation on Cell Temperature Control Method of Planar Solid Oxide Fuel Cell
,”
Energy Convers. Manage.
0196-8904,
47
(
15–16
), pp.
2319
2328
.
33.
Jurado
,
F.
, and
Jose Ramon
,
S.
, 2003, “
Adaptive Control of a Fuel Cell-Microturbine Hybrid Power Plant
,”
IEEE Trans. Energy Convers.
0885-8969,
18
(
2
), pp.
342
347
.
34.
Kandepu
,
R.
,
Imsland
,
L.
,
Foss
,
B. A.
,
Stiller
,
C.
,
Thorud
,
B.
, and
Bolland
,
O.
, 2007, “
Modeling and Control of a SOFC-GT-Based Autonomous Power System
,”
Energy
0360-5442,
32
(
4
), pp.
406
417
.
35.
Kaneko
,
T.
,
Brouwer
,
J.
, and
Samuelsen
,
G. S.
, 2006, “
Power and Temperature Control of Fluctuating Biomass Gas Fueled Solid Oxide Fuel Cell and Micro Gas Turbine Hybrid System
,”
J. Power Sources
0378-7753,
160
(
1
), pp.
316
325
.
36.
Mueller
,
F.
, et al.
, 2006, “
Control Design for a Bottoming Solid Oxide Fuel Cell Gas Turbine Hybrid System
,”
Fuel Cell Science, Engineering and Technology
, Irvine, CA,
ASME
,
New York
.
37.
Roberts
,
R.
, 2005, “
A Dynamic Fuel Cell-Gas Turbine Hybrid Simulation Methodology to Establish Control Strategies and an Improved Balance of Plant
,” Doctorate thesis, Department of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, CA.
38.
Stiller
,
C.
,
Thorud
,
B.
,
Bolland
,
O.
,
Kandepu
,
R.
, and
Imsland
,
L.
, 2006, “
Control Strategy for a Solid Oxide Fuel Cell and Gas Turbine Hybrid System
,”
J. Power Sources
0378-7753,
158
(
1
), pp.
303
315
.
39.
Roberts
,
R.
,
Brouwer
,
J.
,
Jabbari
,
F.
,
Junker
,
T.
, and
Ghezel-Ayagh
,
H.
, 2006, “
Control Design of an Atmospheric Solid Oxide Fuel Cell/Gas Turbine Hybrid System: Variable Versus Fixed Speed Gas Turbine Operation
,”
J. Power Sources
0378-7753,
161
(
1
), pp.
484
491
.
40.
Selimovic
,
A.
,
Kemm
,
M.
,
Torisson
,
T.
, and
Assadi
,
M.
, 2005, “
Steady State and Transient Thermal Stress Analysis in Planar Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
145
(
2
), pp.
463
469
.
41.
Min
,
K.
,
Brouwer
,
J.
,
Auckland
,
J.
,
Mueller
,
F.
, and
Samuelsen
,
S.
, 2006, “
Dynamic Simulation of a Stationary PEM Fuel Cell System
,”
Fuel Cell Science, Engineering and Technology
, Irvine, CA,
ASME
,
New York
.
42.
Mueller
,
F.
,
Gaynor
,
R.
,
Auld
,
A. E.
,
Brouwer
,
J.
,
Jabbari
,
F.
, and
Samuelsen
,
G. S.
, 2008, “
Synergistic Integration of a Gas Turbine and Solid Oxide Fuel Cell for Improved Transient Capability
,”
J. Power Sources
0378-7753,
176
(
1
), pp.
229
239
.
43.
Mueller
,
F.
, 2008, “
The Dynamics and Control of Integrated Solid Oxide Fuel Cell Systems: Transient Load-Following and Fuel Disturbance Rejection
,” Doctorate thesis, Department of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, CA.
44.
Mueller
,
F.
,
Jabbari
,
F.
,
Brouwer
,
J.
,
Junker
,
T.
, and
Ghezel-Ayagh
,
H.
, 2006, “
Linear Quadratic Regulator for a Bottoming Solid Oxide Fuel Cell Gas Turbine Hybrid System
,”
International Colloquium on Environmentally Preferred Advanced Power Generation
, Newport Beach, CA,
ASME
,
New York
.
45.
Roberts
,
R. A.
,
Jack
,
B.
,
Liese
,
E.
, and
Gemmen
,
R. S.
, 2006, “
Dynamic Simulation of Carbonate Fuel Cell-Gas Turbine Hybrid Systems
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
128
, pp.
294
301
.
You do not currently have access to this content.