A systematic study was initiated of anode-supported single cells with Pr0.58Sr0.4Co0.2Fe0.8O3δ (PSCF) cathode. These solid oxide fuel cells (SOFCs) were characterized by electrochemical and diffusion and permeation measurements. In particular, the influence of various sintering temperatures of the cathode and various types of Ce0.8Gd0.2O2δ (CGO) interlayer was investigated in more detail. Results from electrochemical measurements performed between 650°C and 800°C showed that the performance of anode-supported SOFCs with screen-printed porous CGO interlayer and a PSCF cathode was excellent. Even at 650°C, the area-specific resistance was lower than 0.5Ωcm2. The microstructure of the cathode and the performance of this type of SOFC were not obviously affected by variations in the sintering temperature of the cathode. Higher electrochemical performance, in particular, in the temperature range 650750°C, was achieved by applying a thin and dense CGO interlayer using reactive sputtering or electron beam physical vapor deposition.

1.
Mai
,
A.
, 2004, “
Katalytische und Elektrochemische Eigenschaften von Eisen- und Kobalthaltigen Perowskiten als Kathoden für die Oxidkeramische Brennstoffzelle (SOFC)
,” Ph.D. thesis, Ruhr-Universität Bochum, Germany.
2.
Ahmad-Khanlou
,
A.
, 2000, “
Alternative Werkstoffe für Komponenten der Hochtemperatur-Brennstoffzelle (SOFC) zur Herabsetzung der Betriebstemperatur
,” Ph.D. thesis, Ruhr-Universität Bochum, Germany.
3.
Haanappel
,
V. A. C.
,
Mertens
,
J.
,
Rutenbeck
,
D.
,
Tropartz
,
C.
,
Herzhof
,
W.
,
Sebold
,
D.
, and
Tietz
,
F.
, 2005, “
Optimisation of Processing and Microstructural Parameters of LSM Cathodes to Improve the Electrochemical Performance of Anode-Supported SOFCs
,”
J. Power Sources
0378-7753,
141
, pp.
216
226
.
4.
Mertens
,
J.
,
Haanappel
,
V. A. C.
,
Tropartz
,
C.
,
Herzhof
,
W.
, and
Buchkremer
,
H. P.
, 2006, “
The Electrochemical Performance of Anode-Supported SOFCs With LSM-Type Cathodes Produced by Alternative Processing Routes
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
3
, pp.
125
130
.
5.
Mertens
,
J.
,
Haanappel
,
V. A. C.
,
Wedershoven
,
C.
, and
Buchkremer
,
H. P.
, 2006, “
Sintering Behavior of (La,Sr)MnO3 Type Cathodes for Planar Anode-Supported SOFCs
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
3
, pp.
415
421
.
6.
Mai
,
A.
,
Haanappel
,
V. A. C.
,
Uhlenbruck
,
S.
,
Tietz
,
F.
, and
Stöver
,
D.
, 2005, “
Ferrite-Based Perovskites as Cathode Materials for Anode-Supported Solid Oxide Fuel Cells—Part I. Variation of Composition
,”
Solid State Ionics
0167-2738,
176
, pp.
1341
1350
.
7.
Mai
,
A.
,
Haanappel
,
V. A. C.
,
Tietz
,
F.
, and
Stöver
,
D.
, 2006, “
Ferrite-Based Perovskites as Cathode Materials for Anode-Supported Solid Oxide Fuel Cells—Part II. Influence of the CGO Interlayer
,”
Solid State Ionics
0167-2738,
177
, pp.
2103
2107
.
8.
Qui
,
L.
,
Ichikawa
,
T.
,
Hirano
,
A.
,
Imanishi
,
N.
, and
Takeda
,
Y.
, 2003, “
Ln1−xSrxCo1−yFeyO3−δ (Ln=Pr,Nd,Gd; x=0.2,0.3) for the Electrodes of Solid Oxide Fuel Cells
,”
Solid State Ionics
0167-2738,
158
, pp.
55
65
.
9.
Sasaki
,
Y.
,
Takeda
,
Y.
,
Kato
,
A.
,
Imanishi
,
N.
,
Yamamoto
,
O.
,
Hattori
,
M.
, and
Iio
,
M.
, 1999, “
Ln1−xSrxMnO3 (Ln=Pr, Nd, Sm and Gd) as the Cathode Material for Solid Oxide Fuel Cells
,”
Solid State Ionics
0167-2738,
118
, pp.
187
194
.
10.
Tu
,
H. Y.
,
Takeda
,
Y.
,
Imanishi
,
N.
, and
Yamamoto
,
O.
, 1999, “
Ln0.4Sr0.6Co0.8Fe0.2O3−δ (Ln=La,Pr,Nd,Sm,Gd) for the Electrode in Solid Oxide Fuel Cells
,”
Solid State Ionics
0167-2738,
117
, pp.
277
281
.
11.
Kammer
,
K.
, 2006, “
Studies of Fe–Co Based Perovskite Cathodes With Different A-Site Cations
,”
Solid State Ionics
0167-2738,
177
, pp.
1047
1051
.
12.
Buchkremer
,
H. P.
,
Dieckmann
,
U.
, and
Stöver
,
D.
, 1996, “
Component Manufacturing and Stack Integration of Anode-Supported Planar SOFC System
,”
Proceedings of the Second European Solid Oxide Fuel Cell Forum
,
B.
Thorstensen
, ed.,
Eur. SOFC Forum
,
Oberrohrdorf, Switzerland
, May, pp.
221
228
.
13.
Huijsmans
,
J. P. P.
,
van Berkel
,
F. P. F.
, and
Christie
,
G. M.
, 1988, “
Intermediate Temperature SOFC—A Promise for the 21st Century
,”
J. Power Sources
0378-7753,
71
, pp.
107
110
.
14.
Yan
,
J. W.
,
Lu
,
Y. G.
,
Jiang
,
Y.
,
Dong
,
Y. L.
,
Yu
,
C. U.
, and
Li
,
W. Z.
, 2002, “
Fabrication and Testing of a Doped Lanthanum Gallate Electrolyte Thin-Film Solid Oxide Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
149
(
9
), pp.
A1132
A1135
.
15.
Fott
,
P.
,
Petrini
,
S.
, and
Schneider
,
P.
, 1983, “
Transport Parameters of Monodisperse Porous Catalysts
,”
Collect. Czech. Chem. Commun.
0010-0765,
48
, pp.
215
227
.
16.
Arnost
,
D.
, and
Schneider
,
P.
, 1995, “
Dynamic Transport of Multicomponent Mixtures of Gases in Porous Solids
,”
Chem. Eng. J.
0300-9467,
57
, pp.
91
99
.
17.
Rothfeld
,
L. B.
, 1963, “
Gaseous Counterdiffusion in Catalyst Pellets
,”
AIChE J.
0001-1541,
9
(
1
), pp.
19
24
.
18.
Hejtmanek
,
P.
,
Capek
,
P.
,
Solcova
,
O.
, and
Schneider
,
P.
, 2000, “
Determination of Transport Parameters of Porous Catalysts Using Unsteady Permeation of Gases
,”
Chem. Pap.
0366-6352,
54
(
4
), pp.
215
220
.
You do not currently have access to this content.