Abstract

A good strategy for energy management is essential to control the power distribution between fuel cells and batteries in hybrid electric cars. Various energy management systems have been explored in the literature, focusing on optimizing the fuel cell characteristics. The literature review reveals researchers have not adequately addressed the effect of key battery parameters for developing energy management strategies for realistic driving conditions. This research proposes a novel energy management strategy with a multi-objective optimization for fuel cell battery hybrids, focusing on fuel efficiency, energy utilization, and drivability. Energetic macroscopic representation is a framework for powertrain modeling, aiding in creating the energy management system (EMS). The main goal is to provide a systematic control framework that integrates local bus voltage and traction control controllers with a global controller for energy management systems. The unique EMS regulates power flows by dynamically modifying battery and fuel cell operation's rate limitations and saturation levels. The thresholds for rate restriction and saturation are optimized offline using the multi-objective optimization. The impact of optimization parameters on the optimization goals is examined using three standard driving cycles. The simulation findings demonstrate that the efficacy of local controllers is contingent upon the driving cycle. Battery management excels in low dynamic power cycles, whereas fuel cell management is superior in high constant power cycles. The EMS may allocate power between the battery and the fuel cell, allowing the battery to manage transients. Altering the operational restrictions modifies the power distribution ratio while meeting the power requirements. Restricting battery power improves battery longevity by 50%. The modification of weights among the optimization targets is also taken into account. Conversely, a greater emphasis on reducing gasoline usage undermines battery energy. Minimization of power errors or drivability is prioritized above everything else. The results demonstrate that the suggested method can function effectively with an accuracy of 91% relative to optimal circumstances. The energy distribution between the battery and fuel cell enhances the longevity of both power sources.

References

1.
Pramuanjaroenkij
,
A.
, and
Kakaç
,
S.
,
2023
, “
The Fuel Cell Electric Vehicles: The Highlight Review
,”
Int. J. Hydrogen Energy
,
48
(
25
), pp.
9401
9425
.
2.
Sovacool
,
B. K.
,
2009
, “
Rejecting Renewables: The Socio-Technical Impediments to Renewable Electricity in the United States
,”
Energy Policy
,
37
(
11
), pp.
4500
4513
.
3.
Twidell
,
J.
,
2021
,
Renewable Energy Resources
, Routledge.
4.
Nasir
,
M. B.
,
Hussain
,
A.
,
Niazi
,
K. A. K.
, and
Nasir
,
M.
,
2022
, “
An Optimal Energy Management System (EMS) for Residential and Industrial Microgrids
,”
Energies
,
15
(
17
), p.
6266
.
5.
Ali
,
A. M.
, and
Moulik
,
B.
,
2022
, “
On the Role of Intelligent Power Management Strategies for Electrified Vehicles: A Review of Predictive and Cognitive Methods
,”
IEEE Trans. Transp. Electrif.
,
8
(
1
), pp.
368
383
.
6.
Lu
,
H.
,
Tao
,
F.
,
Fu
,
Z.
, and
Sun
,
H.
,
2023
, “
Battery-Degradation-Involved Energy Management Strategy Based on Deep Reinforcement Learning for Fuel Cell/Battery/Ultracapacitor Hybrid Electric Vehicle
,”
Electr. Power Syst. Res.
,
220
, p.
109235
.
7.
Moulik
,
B.
, and
Söffker
,
D.
,
2016
, “
Online Power Management With Embedded Offline-Optimized Parameters for a Three-Source Hybrid Powertrain With an Experimental Emulation Application
,”
Energies
,
9
(
6
), p.
439
.
8.
Moulik
,
B.
,
Bhaumik
,
K.
,
Beganovic
,
N.
,
Ali
,
A. M.
, and
Soffker
,
D.
,
2020
, “
Adaptive Prioritization of a Situation-Based Power Management for Hybrid Electric Vehicles
,”
2020 IEEE Vehicle Power and Propulsion Conference, VPPC 2020—Proceedings
.
9.
İnci
,
M.
,
Büyük
,
M.
,
Demir
,
M. H.
, and
İlbey
,
G.
,
2021
, “
A Review and Research on Fuel Cell Electric Vehicles: Topologies, Power Electronic Converters, Energy Management Methods, Technical Challenges, Marketing and Future Aspects
,”
Renewable Sustainable Energy Rev.
,
137
, p.
110648
.
10.
Sulaiman
,
N.
,
Hannan
,
M. A.
,
Mohamed
,
A.
,
Majlan
,
E. H.
, and
Wan Daud
,
W. R.
,
2015
, “
A Review on Energy Management System for Fuel Cell Hybrid Electric Vehicle: Issues and Challenges
,”
Renewable Sustainable Energy Rev.
,
52
, pp.
802
814
.
11.
Teng
,
T.
,
Zhang
,
X.
,
Dong
,
H.
, and
Xue
,
Q.
,
2020
, “
A Comprehensive Review of Energy Management Optimization Strategies for Fuel Cell Passenger Vehicle
,”
Int. J. Hydrogen Energy
,
45
(
39
), pp.
20293
20303
.
12.
Zhao
,
X.
,
Wang
,
L.
,
Zhou
,
Y.
,
Pan
,
B.
,
Wang
,
R.
,
Wang
,
L.
, and
Yan
,
X.
,
2022
, “
Energy Management Strategies for Fuel Cell Hybrid Electric Vehicles: Classification, Comparison, and Outlook
,”
Energy Convers. Manage.
,
270
, p.
116179
.
13.
Kandidayeni
,
M.
,
Trovão
,
J. P.
,
Soleymani
,
M.
, and
Boulon
,
L.
,
2022
, “
Towards Health-Aware Energy Management Strategies in Fuel Cell Hybrid Electric Vehicles: A Review
,”
Int. J. Hydrogen Energy
,
47
(
17
), pp.
10021
10043
.
14.
Yue
,
M.
,
Jemei
,
S.
,
Gouriveau
,
R.
, and
Zerhouni
,
N.
,
2019
, “
Review on Health-Conscious Energy Management Strategies for Fuel Cell Hybrid Electric Vehicles: Degradation Models and Strategies
,”
Int. J. Hydrogen Energy
,
44
(
13
), pp.
6844
6861
.
15.
Lu
,
D.
,
Wang
,
X.
,
Pan
,
C.
,
Tao
,
Y.
,
Zhou
,
J.
, and
Zhao
,
C.
,
2022
, “
Energy Management Strategy for Hybrid Energy Storage Electric Vehicles Based on Pontryagin's Minimum Principle Considering Battery Degradation
,”
Sustainability (Switzerland)
,
14
(
3
), p.
1214
.
16.
Huangfu
,
Y.
,
Li
,
P.
,
Pang
,
S.
,
Tian
,
C.
,
Quan
,
S.
,
Zhang
,
Y.
, and
Wei
,
J.
,
2022
, “
An Improved Energy Management Strategy for Fuel Cell Hybrid Vehicles Based on Pontryagin's Minimum Principle
,”
IEEE Trans. Ind. Appl.
,
58
(
3
), pp.
4086
4097
.
17.
Li
,
J.
,
Wang
,
H.
,
He
,
H.
,
Wei
,
Z.
,
Yang
,
Q.
, and
Igic
,
P.
,
2022
, “
Battery Optimal Sizing Under a Synergistic Framework With DQN-Based Power Managements for the Fuel Cell Hybrid Powertrain
,”
IEEE Trans. Transp. Electrif.
,
8
(
1
), pp.
36
47
.
18.
Huo
,
W.
,
Chen
,
D.
,
Tian
,
S.
,
Li
,
J.
,
Zhao
,
T.
, and
Liu
,
B.
,
2022
, “
Lifespan-Consciousness and Minimum-Consumption Coupled Energy Management Strategy for Fuel Cell Hybrid Vehicles Via Deep Reinforcement Learning
,”
Int. J. Hydrogen Energy
,
47
(
57
), pp.
24026
24041
.
19.
He
,
H.
,
Huang
,
R.
,
Meng
,
X.
,
Zhao
,
X.
,
Wang
,
Y.
, and
Li
,
M.
,
2022
, “
A Novel Hierarchical Predictive Energy Management Strategy for Plug-In Hybrid Electric Bus Combined With Deep Deterministic Policy Gradient
,”
J. Energy Storage
,
52
, p.
104787
.
20.
Li
,
W.
,
Cui
,
H.
,
Nemeth
,
T.
,
Jansen
,
J.
,
Ünlübayir
,
C.
,
Wei
,
Z.
,
Feng
,
X.
, et al
,
2021
, “
Cloud-Based Health-Conscious Energy Management of Hybrid Battery Systems in Electric Vehicles With Deep Reinforcement Learning
,”
Appl. Energy
,
293
, p.
116977
.
21.
Liu
,
Z.
,
Zhao
,
J.
,
Qin
,
Y.
,
Wang
,
G.
,
Shi
,
Q.
,
Wu
,
J.
, and
Yang
,
H.
,
2022
, “
Real Time Power Management Strategy for Fuel Cell Hybrid Electric Bus Based on Lyapunov Stability Theorem
,”
Int. J. Hydrogen Energy
,
47
(
85
), pp.
36216
36231
.
22.
Sarioǧlu
,
I. L.
,
Klein
,
O. P.
,
Schröder
,
H.
, and
Küçükay
,
F.
,
2012
, “
Energy Management for Fuel-Cell Hybrid Vehicles Based on Specific Fuel Consumption Due to Load Shifting
,”
IEEE Trans. Intell. Transp. Syst.
,
13
(
4
), pp.
1772
1781
.
23.
Yuan
,
H. B.
,
Zou
,
W. J.
,
Jung
,
S.
, and
Kim
,
Y. B.
,
2022
, “
A Real-Time Rule-Based Energy Management Strategy With Multi-objective Optimization for a Fuel Cell Hybrid Electric Vehicle
,”
IEEE Access
,
10
, pp.
102618
102628
.
24.
Geng
,
B.
,
Mills
,
J. K.
, and
Sun
,
D.
,
2012
, “
Two-Stage Energy Management Control of Fuel Cell Plug-In Hybrid Electric Vehicles Considering Fuel Cell Longevity
,”
IEEE Trans. Veh. Technol.
,
61
(
2
), pp.
498
508
.
25.
Ghaderi
,
R.
,
Kandidayeni
,
M.
,
Soleymani
,
M.
,
Boulon
,
L.
, and
Trovao
,
J. P. F.
,
2022
, “
Online Health-Conscious Energy Management Strategy for a Hybrid Multi-stack Fuel Cell Vehicle Based on Game Theory
,”
IEEE Trans. Veh. Technol.
,
71
(
6
), pp.
5704
5714
.
26.
Moulik
,
B.
,
Sandeep
,
A. S.
,
Rangi
,
A.
, and
Bouscayrol
,
A.
,
2023
, “
Energy Management and Multi-objective Optimization of a Fuel Cell Hybrid Vehicle
,”
2023 IEEE Vehicle Power and Propulsion Conference, VPPC 2023—Proceedings
.
27.
Castaings
,
A.
,
Lhomme
,
W.
,
Trigui
,
R.
, and
Bouscayrol
,
A.
,
2016
, “
Practical Control Schemes of a Battery/Supercapacitor System for Electric Vehicle
,”
IET Electr. Syst. Transp.
,
6
(
1
), pp.
20
26
.
28.
Allègre
,
A. L.
,
Bouscayrol
,
A.
, and
Trigui
,
R.
,
2013
, “
Flexible Real-Time Control of a Hybrid Energy Storage System for Electric Vehicles
,”
IET Electr. Syst. Transp.
,
3
(
3
), pp.
79
85
.
29.
Bouscayrol
,
A.
, and
Lemaire-Semail
,
B.
,
2023
, “Energetic Macroscopic Representation and Inversion-Based Control,”
Encyclopedia of Electrical and Electronic Power Engineering: Volumes 1-3
, Vol.
3
, pp.
365
375
.
30.
Fernandez
,
A. M. I.
,
Kandidayeni
,
M.
,
Boulon
,
L.
, and
Chaoui
,
H.
,
2020
, “
An Adaptive State Machine Based Energy Management Strategy for a Multi-stack Fuel Cell Hybrid Electric Vehicle
,”
IEEE Trans. Veh. Technol.
,
69
(
1
), pp.
220
234
.
31.
Nguyen
,
B. H.
,
German
,
R.
,
Trovao
,
J. P. F.
, and
Bouscayrol
,
A.
,
2019
, “
Real-Time Energy Management of Battery/Supercapacitor Electric Vehicles Based on an Adaptation of Pontryagin's Minimum Principle
,”
IEEE Trans. Veh. Technol.
,
68
(
1
), pp.
203
212
.
32.
Ali
,
A. M.
,
Moulik
,
B.
, and
Soffker
,
D.
,
2023
, “
Intelligent Real-Time Power Management of Multi-source HEVs Based on Driving State Recognition and Offline Optimization
,”
IEEE Trans. Intell. Transp. Syst.
,
24
(
1
), pp.
247
257
.
You do not currently have access to this content.