Graphical Abstract Figure

Equalization circuit topology

Graphical Abstract Figure

Equalization circuit topology

Close modal

Abstract

Impedance spectroscopy can characterize a variety of states within a battery and shows great potential for application in safety warning and condition assessment, but there is a lack of an effective online monitoring method. Therefore, this article proposes a method for online measurement of impedance spectroscopy based on harmonic injection of equalization currents, which superimposes different frequency sinusoidal perturbation signals on the original equalization currents through process reconstruction and collaborative control, and realizes real-time impedance spectroscopy monitoring at the level of single cell without additional hardware. In order to verify the validity of the method proposed in this article, a hardware experimental platform was constructed. First, a four-switch buck-boost (FSBB) converter is used to perform energy equalization of a six-cell Li-ion battery pack under different working conditions, and the experimental results show that the Li-ion battery pack can be equalized by the active equalization circuit under the states of resting, charging, and discharging in about 60 min, 75 min, and 100 min, respectively. Then, the impedance spectroscopy in the frequency range of 0.2 Hz–800 Hz is achieved through the collaborative control of active equalization and impedance spectroscopy. Finally, in order to verify the reliability of the measured data, the measured impedance spectroscopy data were evaluated by the Kramers–Kronig (K-K) transforms, and the data measured at the initial stage were compared and analyzed with the data measured by a professional electrochemical workstation, which verified the validity of the method proposed in this article.

References

1.
Fan
,
W.
,
Zhang
,
Z.
,
Dong
,
M.
, and
Ren
,
M.
,
2021
, “
On-line Estimation Method for Internal Temperature of Lithium-Ion Battery Based on Electrochemical Impedance Spectroscopy
,”
IEEE Electrical Insulation Conference
,
Denver, CO
,
June 7–28
, p.
3283
.
2.
Beelen
,
H.
,
Shivakumar
,
K. M.
,
Raijmakers
,
L.
,
Donkers
,
M. C. F.
, and
Bergveld
,
H. J.
,
2020
, “
Towards Impedance-Based Temperature Estimation for Li-Ion Battery Packs
,”
Int. J. Energy Res.
,
44
(
4
), pp.
2889
2908
.
3.
Li
,
W.
,
Li
,
Y.
,
Garg
,
A.
, and
Gao
,
L.
,
2024
, “
Enhancing Real-Time Degradation Prediction of Lithium-Ion Battery: A Digital Twin Framework With CNN-LSTM-Attention Model
,”
Energy
,
286
(
15
), p.
129681
.
4.
Crescentini
,
M.
,
De Angelis
,
A.
,
Ramilli
,
R.
,
De Angelis
,
G.
,
Tartagni
,
M.
, and
Moschitta
,
A.
,
2021
, “
Online EIS and Diagnostics on Lithium-Ion Batteries by Means of Low-Power Integrated Sensing and Parametric Modeling
,”
IEEE Trans. Instrum. Meas.
,
70
(
99
), pp.
1
11
.
5.
Sadeghi
,
E.
,
Gholami
,
M. M.
,
Hamzeh
,
M.
,
Alavi
,
S. M. M.
, and
Saif
,
M.
,
2023
, “
A Systematic Overview of Power Electronics Interfaced Electrochemical Impedance Spectroscopy for Energy Storage Systems
,”
J. Energy Storage
,
62
(
46
), p.
106850
.
6.
Gücin
,
T. N.
,
Ovacik
,
L.
, and
Ocacik
,
L.
,
2020
, “
Online Impedance Measurement of Batteries Using the Cross-Correlation Technique
,”
IEEE Trans. Power Electron.
,
35
(
4
), pp.
4365
4375
.
7.
Babaeiyazdi
,
I.
,
Rezaei-Zare
,
A.
, and
Shokrzadeh
,
S.
,
2021
, “
State of Charge Prediction of EV Li-Ion Batteries Using EIS: A Machine Learning Approach
,”
Energy
,
223
(
6
), p.
120116
.
8.
Wang
,
X.
,
Zheng
,
Z.
,
Aillerie
,
M.
,
De Bernardinis
,
A.
,
Pera
,
M.
, and
Hissel
,
D.
,
2023
, “
Online Impedance Spectroscopy Characterization of PV Panels by Studying Resonant Behavior of Boost Converter
,”
IEEE Transportation Electrification Conference & Expo (ITEC)
,
Detroit, MI
,
June 21–23
, p.
13039
.
9.
Shen
,
J.
, and
Wang
,
J.
,
2020
, “
Analysis and Design of an Isolated Converter With Embedded EIS Function for Fuel Cell Stack Considering Low Frequency Oscillations
,”
IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society
,
Singapore
,
Oct. 18–21
, p.
1750
.
10.
Wang
,
L.
,
Lu
,
D.
,
Song
,
M.
,
Zhao
,
X.
, and
Li
,
G.
,
2020
, “
Instantaneous Estimation of Internal Temperature in Lithium-Ion Battery by Impedance Measurement
,”
Int. J. Energy Res.
,
44
(
4
), pp.
3082
3097
.
11.
Dong
,
M.
,
Fan
,
W.
,
Liu
,
W.
,
Zhang
,
Z.
, and
Ren
,
M.
,
2022
, “
Health Assessment of Lithium-Ion Batteries Based on Characteristic Frequency Impedance
,”
Proc. CSEE
,
42
(
24
), p.
9094
.
12.
Abu-Qahouq
,
J. A.
, and
Xia
,
Z.
,
2017
, “
Single-Perturbation-Cycle Online Battery Impedance Spectroscopy Measurement Method With Closed-Loop Control of Power Converter
,”
IEEE Trans. Ind. Electron.
,
64
(
9
), pp.
7019
7029
.
13.
Wang
,
L.
,
Song
,
Z.
,
Zhu
,
L.
, and
Jiang
,
J.
, “
Fast Electrochemical Impedance Spectroscopy of Lithium-Ion Batteries Based on the Large Square Wave Excitation Signal
,”
iScience
,
26
(
4
), p.
106463
.
14.
Zhao
,
L.
,
Qiang
,
F.
, and
Liu
,
Z.
,
2016
, “
An Electrochemical Impedance Spectroscopy Measurement System for Electric Vehicle Batteries
,”
2016 35th Chinese Control Conference (CCC)
,
Chengdu, China
,
July 27–29
, p.
5050
.
15.
Bajaj
,
A.
,
Li
,
W.
,
Xiong
,
M.
,
Mou
,
J.
, and
Garg
,
A.
,
2024
, “
A Novel Self-Reconfigurable Battery Pack Design With and Without Active Cell Balancing
,”
Energy Technol.
,
12
(
12
), p.
1002
.
16.
Howey
,
D. A.
,
Mitcheson
,
P. D.
,
Yufit
,
V.
,
Offer
,
G. J.
, and
Brandon
,
N. P.
,
2014
, “
Online Measurement of Battery Impedance Using Motor Controller Excitation
,”
IEEE Trans. Vehic. Technol.
,
63
(
6
), pp.
2557
2566
.
17.
Lee
,
Y.-D.
,
Park
,
S.-Y.
, and
Han
,
S.-B.
,
2015
, “
Online Embedded Impedance Measurement Using High Power Battery Charger
,”
IEEE Trans. Ind. Appl.
,
51
(
1
), pp.
498
508
.
18.
Shang
,
Y.
,
Xia
,
B.
,
Lu
,
F.
,
Zhang
,
C.
,
Cui
,
N.
, and
Mi
,
C. C.
,
2017
, “
A Switched Coupling Capacitor Equalizer for Series Connected Battery Strings
,”
IEEE Trans. Power Electron.
,
32
(
10
), pp.
7694
7706
.
19.
Kim
,
M.
,
Kim
,
J.
, and
Moon
,
G.
,
2014
, “
Center-Cell Concentration Structure of a Cell-to-Cell Balancing Circuit With a Reduced Number of Switches
,”
IEEE Trans. Power Electron.
,
29
(
10
), pp.
5285
5297
.
20.
Wei
,
X.
,
Wang
,
X.
, and
Dai
,
H.
,
2018
, “
Practical On-Board Measurement of Lithium Ion Battery Impedance Based on Distributed Voltage and Current Sampling
,”
Energies
,
11
(
1
), p.
64
.
21.
Valiūnienė
,
A.
,
Sabirovas
,
T.
,
Petronienė
,
J.
, and
Ramanavicus
,
A.
,
2020
, “
Towards the Application of Fast Fourier Transform-Scanning Electrochemical Impedance Microscopy
,”
J. Electroanal. Chem.
,
864
(
21
), p.
114067
.
22.
Boukamp
,
B. A.
,
1995
, “
A Linear Kronig-Kramers Transform Test for Immittance Data Validation
,”
J. Electrochem. Soc.
,
142
(
6
), pp.
1885
1894
.
23.
Agarwal
,
P.
,
Orazem
,
M. E.
, and
García-Rubio
,
L. H.
,
1992
, “
Measurement Models for Electrochemical Impedance Spectroscopy: I. Demonstration of Applicability
,”
J. Electrochem. Soc.
,
139
(
7
), pp.
1917
1927
.
24.
Liu
,
Y.
,
Wang
,
L.
,
Li
,
D.
, and
Wang
,
K.
,
2023
, “
State-of-Health Estimation of Lithium-Ion Batteries Based on Electrochemical Impedance Spectroscopy: A Review
,”
Prot. Control Modern Power Syst.
,
8
, p.
15
.
You do not currently have access to this content.