Abstract

To understand the dynamic failure mechanisms of cylindrical lithium-ion battery (LIB) under different impact loadings, the crushing behaviors of 18650 LIBs were experimentally investigated in this work. The drop weight impact tests with different impactor heads were conducted to analyze the crushing responses of the LIBs. By changing the state of charge (SOC) of the battery, impactor types, and impact energy, the force-electric responses of a LIB under multiple impacts were explored. Macro- and micro-deformation of the batteries were further studied including SOC dependency and the failure modes of the separator. Results show that except for impact energy, the mechanical responses and failure behaviors of the LIBs under repeated impacts also depended upon the SOC and impactor types. The relationship between impact velocity and the minimum impact times was established when a hard internal short circuit (ISC) appeared to evaluate the dynamic safety of the LIBs. These results can provide guidance for the crashworthiness design and safety assessment of the batteries under multiple impacts.

References

1.
Abada
,
S.
,
Marlair
,
G.
,
Lecocq
,
A.
,
Petit
,
M.
,
Moynot
,
V. S.
, and
Huet
,
F.
,
2016
, “
Safety Focused Modeling of Lithium-Ion Batteries: A Review
,”
J. Power Sources
,
306
, pp.
178
192
.
2.
Semeraro
,
C.
,
Caggiano
,
M.
,
Olabi
,
A. G.
, and
Dassisti
,
M.
,
2022
, “
Battery Monitoring and Prognostics Optimization Techniques: Challenges and Opportunities
,”
Energy
,
255
, p.
124538
.
3.
Li
,
W.
,
Wu
,
K.
,
Song
,
J. Y.
,
Chen
,
Y.
,
Li
,
J. N.
, and
Xu
,
J.
,
2022
, “
Safety Optimal Design of Lithium Ion Battery Cell Based on Multiphysics Models
,”
ASME J. Electrochem. Energy Convers. Storage
,
19
(
3
), p.
030907
.
4.
Liu
,
W.
,
Placke
,
T.
, and
Chau
,
K. T.
,
2022
, “
Overview of Batteries and Battery Management for Electric Vehicles
,”
Energy Rep.
,
8
, pp.
4058
4084
.
5.
Wang
,
L. B.
,
2021
, “
Deformation and Failure Properties of Lithium-Ion Battery Under Axial Nail Penetration
,”
ASME J. Electrochem. Energy Convers. Storage
,
18
(
2
), p.
020906
.
6.
Sahraei
,
E.
,
Hill
,
R.
, and
Wierzbicki
,
T.
,
2012
, “
Calibration and Finite Element Simulation of Pouch Lithium-Ion Batteries for Mechanical Integrity
,”
J. Power Sources
,
201
, pp.
307
321
.
7.
Sahraei
,
E.
,
Campbell
,
J.
, and
Wierzbicki
,
T.
,
2012
, “
Modeling and Short Circuit Detection of 18650 Li-Ion Cells Under Mechanical Abuse Conditions
,”
J. Power Sources
,
220
, pp.
360
372
.
8.
Greve
,
L.
, and
Fehrenbach
,
C.
,
2012
, “
Mechanical Testing and Macro-Mechanical Finite Element Simulation of the Deformation, Fracture, and Short Circuit Initiation of Cylindrical Lithium Ion Battery Cells
,”
J. Power Sources
,
214
, pp.
377
385
.
9.
Xu
,
J.
,
Liu
,
B. H.
,
Wang
,
X. Y.
, and
Hu
,
D. Y.
,
2016
, “
Computational Model of 18650 Lithium-Ion Battery With Coupled Strain Rate and SOC Dependencies
,”
Appl. Energy
,
172
, pp.
180
189
.
10.
Wang
,
W. W.
,
Yang
,
S.
, and
Lin
,
C.
,
2017
, “
Clay-Like Mechanical Properties for the Jellyroll of Cylindrical Lithium-Ion Cells
,”
Appl. Energy
,
196
, pp.
249
258
.
11.
Sheikh
,
M.
,
Elmarakbi
,
A.
, and
Elkady
,
M.
,
2017
, “
Thermal Runaway Detection of Cylindrical 18650 Lithium-Ion Battery Under Quasi-Static Loading Conditions
,”
J. Power Sources
,
370
, pp.
61
70
.
12.
Wang
,
L. B.
,
Yin
,
S.
, and
Xu
,
J.
,
2019
, “
A Detailed Computational Model for Cylindrical Lithium-Ion Batteries Under Mechanical Loading: From Cell Deformation to Short-Circuit Onset
,”
J. Power Sources
,
413
, pp.
284
292
.
13.
Jia
,
Y. K.
,
Darst
,
J.
,
Surelia
,
A.
,
Delafuente
,
D.
,
Finegan
,
D. P.
, and
Xu
,
J.
,
2022
, “
Deformation and Fracture Behaviors of Cylindrical Battery Shell During Thermal Runaway
,”
J. Power Sources
,
539
, p.
231607
.
14.
Jia
,
Y. K.
,
Darst
,
J.
,
Surelia
,
A.
,
Delafuente
,
D.
,
Finegan
,
D. P.
, and
Xu
,
J.
,
2022
, “
Precise and Fast Safety Risk Classification of Lithium-Ion Batteries Based on Machine Learning Methodology
,”
J. Power Sources
,
548
, p.
232064
.
15.
Zhu
,
X.
,
Wang
,
H.
,
Wang
,
X.
,
Gao
,
Y. F.
,
Allu
,
S.
,
Cakmak
,
E.
, and
Wang
,
Z. P.
,
2020
, “
Internal Short Circuit and Failure Mechanisms of Lithium-Ion Pouch Cells Under Mechanical Indentation Abuse Conditions: An Experimental Study
,”
J. Power Sources
,
455
, p.
227939
.
16.
Chung
,
S. H.
,
Dejean
,
T. T.
,
Zhu
,
J. E.
,
Luo
,
H.
, and
Wierzbicki
,
T.
,
2018
, “
Failure in Lithium-Ion Batteries Under Transverse Indentation Loading
,”
J. Power Sources
,
389
, pp.
148
159
.
17.
Li
,
W.
,
Xia
,
Y.
,
Chen
,
G. H.
, and
Elham
,
S.
,
2018
, “
Comparative Study of Mechanical-Electrical-Thermal Responses of Pouch, Cylindrical, and Prismatic Lithium-Ion Cells Under Mechanical Abuse
,”
Sci. China Technol. Sci.
,
61
(
10
), pp.
1472
1482
.
18.
Li
,
W.
,
Xia
,
Y.
,
Zhu
,
J.
, and
Luo
,
H. L.
,
2018
, “
State-of-Charge Dependence of Mechanical Response of Lithium-Ion Batteries: A Result of Internal Stress
,”
J. Electrochem. Soc.
,
165
(
7
), pp.
A1537
A1546
.
19.
Thomas
,
T. D.
,
Vincent
,
G.
, and
Dirk
,
M.
,
2021
, “
Strain Rate Dependent Plasticity of Lithium-Ion Pouch Cells: Experiments and Simulations
,”
Int. J. Impact Eng.
,
159
, p.
104048
.
20.
Keshavarzi
,
M.
,
Gilaki
,
M.
, and
Sahraei
,
E.
,
2022
, “
Characterization of In-Situ Material Properties of Pouch Lithium-Ion Batteries in Tension From Three-Point Bending Tests
,”
Int. J. Mech. Sci.
,
219
, p.
107090
.
21.
Budiman
,
A.
,
Rahardian
,
S.
,
Saputro
,
A.
,
Hidayat
,
A.
,
Nurprasetio
,
I. P.
, and
Sambegoro
,
P.
,
2022
, “
Structural Integrity of Lithium-Ion Pouch Battery Subjected to Three-Point Bending
,”
Eng. Fail. Anal.
,
138
, p.
106307
.
22.
Mo
,
F. H.
,
Tian
,
Y.
,
Zhao
,
S. Q.
,
Xiao
,
Z.
, and
Ma
,
Z. L.
,
2022
, “
Working Temperature Effects on Mechanical Integrity of Cylindrical Lithium-Ion Batteries
,”
Eng. Fail. Anal.
,
137
, p.
106399
.
23.
Liu
,
B. H.
,
Jia
,
Y. K.
,
Yuan
,
C. H.
,
Wang
,
L. B.
,
Gao
,
X.
,
Yin
,
S.
, and
Xu
,
J.
,
2020
, “
Safety Issues and Mechanisms of Lithium-Ion Battery Cell Upon Mechanical Abusive Loading: A Review
,”
Energy Storage Mater.
,
24
, pp.
85
112
.
24.
Ma
,
T. Y.
,
Chen
,
L. D.
,
Liu
,
S. Q.
,
Zhang
,
Z.
,
Xiao
,
S.
,
Fan
,
B.
,
Liu
,
L.
,
Lin
,
C. J.
,
Ren
,
S.
, and
Wang
,
F.
,
2019
, “
Mechanics-Morphologic Coupling Studies of Commercialized Lithium-Ion Batteries Under Nail Penetration Test
,”
J. Power Sources
,
437
, p.
226928
.
25.
Yamanaka
,
T.
,
Takagishi
,
Y.
,
Tozuka
,
Y.
, and
Yamaue
,
T.
,
2019
, “
Modeling Lithium Ion Battery Nail Penetration Tests and Quantitative Evaluation of the Degree of Combustion Risk
,”
J. Power Sources
,
416
, pp.
132
140
.
26.
Deng
,
J.
,
Smith
,
I.
, and
Bae
,
C.
,
2020
, “
Impact Modeling and Testing of Pouch and Prismatic Cells
,”
J. Electrochem. Soc.
,
167
(
9
), p.
090550
.
27.
Li
,
Y. D.
,
Wang
,
W. W.
,
Lin
,
C.
,
Yang
,
X. G.
, and
Zuo
,
F. H.
,
2021
, “
A Safety Performance Estimation Model of Lithium-Ion Batteries for Electric Vehicles Under Dynamic Compression
,”
Energy
,
215
(
Part A
), p.
119050
.
28.
Kotter
,
P.
,
Kisters
,
T.
, and
Schleicher
,
A.
,
2019
, “
Dynamic Impact Tests to Characterize the Crashworthiness of Large-Format Lithium-Ion Cells
,”
J. Energy Storage
,
26
, p.
100948
.
29.
Kisters
,
T.
,
Sahraei
,
E.
, and
Wierzbicki
,
T.
,
2017
, “
Dynamic Impact Tests on Lithium-Ion Cells
,”
Int. J. Impact Eng.
,
108
, pp.
205
216
.
30.
Zhu
,
J.
,
Luo
,
H. L.
,
Li
,
W.
,
Gao
,
T.
,
Xia
,
Y.
, and
Wierzbicki
,
T.
,
2019
, “
Mechanism of Strengthening of Battery Resistance Under Dynamic Loading
,”
Int. J. Impact Eng.
,
131
, pp.
78
84
.
31.
Xia
,
Y.
,
Chen
,
G.
,
Zhou
,
Q.
,
Shi
,
X. N.
, and
Shi
,
F. Y.
,
2017
, “
Failure Behaviours of 100% SOC Lithium-Ion Battery Modules Under Different Impact Loading Conditions
,”
Eng. Fail. Anal.
,
82
, pp.
149
160
.
32.
Wang
,
W. W.
,
Yang
,
S.
,
Lin
,
C.
,
Shen
,
W. X.
,
Lu
,
G. X.
,
Li
,
Y. D.
, and
Zhang
,
J. J.
,
2020
, “
Investigation of Mechanical Property of Cylindrical Lithium-Ion Batteries Under Dynamic Loadings
,”
J. Power Sources
,
451
, p.
227749
.
33.
Jia
,
Y.
,
Yin
,
S.
,
Liu
,
B.
,
Zhao
,
H.
,
Yu
,
H.
,
Li
,
J.
, and
Xu
,
J.
,
2019
, “
Unlocking the Coupling Mechanical-Electrochemical Behavior of Lithium-Ion Battery Upon Dynamic Mechanical Loading
,”
Energy
,
166
, pp.
951
960
.
34.
Chen
,
X. P.
,
Yuan
,
Q.
,
Wang
,
T.
,
Ji
,
H. B.
,
Ji
,
Y. P.
,
Li
,
L.
, and
Liu
,
Y. Z.
,
2020
, “
Experimental Study on the Dynamic Behavior of Prismatic Lithium-Ion Battery Upon Repeated Impact
,”
Eng. Fail. Anal.
,
115
, p.
104667
.
35.
Xi
,
S. J.
,
Zhao
,
Q. C.
,
Chang
,
L. J.
,
Huang
,
X. Y.
, and
Cai
,
Z. H.
,
2020
, “
The Dynamic Failure Mechanism of a Lithium-Ion Battery at Different Impact Velocity
,”
Eng. Fail. Anal.
,
116
, p.
104747
.
36.
Zhang
,
H. J.
,
Zhou
,
M. Z.
,
Hu
,
L. L.
, and
Zhang
,
Z. W.
,
2020
, “
Mechanism of the Dynamic Behaviors and Failure Analysis of Lithium-Ion Batteries Under Crushing Based on Stress Wave Theory
,”
Eng. Fail. Anal.
,
108
, p.
104290
.
37.
Chen
,
Y. Y.
,
Santhanagopalan
,
S.
,
Babu
,
V.
, and
Ding
,
Y.
,
2019
, “
Dynamic Mechanical Behavior of Lithium-Ion Pouch Cells Subjected to High-Velocity Impact
,”
Compos. Struct.
,
218
, pp.
50
59
.
38.
Niu
,
X. Y.
,
An
,
M. L.
,
Li
,
X. M.
,
Li
,
W.
,
Zhang
,
X. C.
, and
Wang
,
Y. S.
,
2022
, “
Effects of Multiple Impacts on the Microstructure and Dynamic Mechanical Properties of SAC0307 Alloy
,”
J. Mater. Eng. Perform.
,
31
(
11
), pp.
9273
9282
.
39.
Xu
,
J.
,
Liu
,
B. H.
,
Wang
,
L. B.
, and
Shang
,
S.
,
2015
, “
Dynamic Mechanical Integrity of Cylindrical Lithium-Ion Battery Cell Upon Crushing
,”
Eng. Fail. Anal.
,
53
, pp.
97
110
.
You do not currently have access to this content.