Abstract

Synthesized biomass-based carbonaceous materials from Palmae plant wastes with self-adhesive properties, converted into coin-like shapes, are used as supercapacitor electrodes with high power and energy density, high specific capacitance, excellent electrical conductivity, low cost, and environmentally friendly. Therefore, this study aims to investigate a simple and cost-effective method to generate porous carbon activation from Palmae plant waste biomass, namely areca leaf midrib (ALM). Activated carbon (AC) material derived from ALM was obtained through precarbonization, alkaline chemical activation, and two-step pyrolysis, namely carbonization and physical activation at 600 °C and 700 °C in the N2 as well as CO2 atmosphere, respectively. Its physical properties show an sp2 structure with high graphitization or amorphousness and two sloping peaks in the hkl plane at an angle of 2θ, approximately 24 deg and 44 deg. The electrochemical properties of AC supercapacitor cells derived from ALM biomass have the highest specific capacitance value of 216 F g−1 at a scan rate of 1 mV s−1 in a two-electrode system. Furthermore, the cell obtained a maximum energy density of 11 W h kg−1 and a power density of 196 W kg−1, respectively. Therefore, this study recommends an innovative and environmentally safe approach for producing high-performance supercapacitor cell electrodes for energy storage without adding nanomaterials and externally doped heteroatoms.

References

1.
Lin
,
G.
,
Ma
,
R.
,
Zhou
,
Y.
,
Liu
,
Q.
,
Dong
,
X.
, and
Wang
,
J.
,
2018
, “
KOH Activation of Biomass-Derived Nitrogen-Doped Carbons for Supercapacitor and Electrocatalytic Oxygen Reduction
,”
Electrochim. Acta
,
261
(
7
), pp.
49
57
.
2.
Fang
,
C.
,
Hu
,
P.
,
Dong
,
S.
,
Cheng
,
Y.
,
Zhang
,
D.
, and
Zhang
,
X.
,
2021
, “
Construction of Carbon Nanorods Supported Hydrothermal Carbon and Carbon Fiber From Waste Biomass Straw for High Strength Supercapacitor
,”
J. Colloid Interface Sci.
,
582
(
68
), pp.
552
560
.
3.
Vinayagam
,
M.
,
Suresh Babu
,
R.
,
Sivasamy
,
A.
, and
Ferreira de Barros
,
A. L.
,
2020
, “
Biomass-Derived Porous Activated Carbon From Syzygium Cumini Fruit Shells and Chrysopogon Zizanioides Roots for High-Energy Density Symmetric Supercapacitors
,”
Biomass Bioenergy
,
143
, p.
105838
.
4.
Jiang
,
G.
,
Senthil
,
R. A.
,
Sun
,
Y.
,
Kumar
,
T. R.
, and
Pan
,
J.
,
2022
, “
Recent Progress on Porous Carbon and Its Derivatives From Plants As Advanced Electrode Materials for Supercapacitors
,”
J. Power Sources
,
520
, p.
230886
.
5.
Jasni
,
M. R. M.
,
Deraman
,
M.
,
Suleman
,
M.
,
Zainuddin
,
Z.
,
Othman
,
M. A. R.
,
Chia
,
C. H.
, and
Hashim
,
M. A.
,
2018
, “
Supercapacitor Electrodes From Activation of Binderless Green Monoliths of Biomass Self-Adhesive Carbon Grains Composed of Varying Amount of Graphene Additive
,”
Ionics
,
24
(
4
), pp.
1195
1210
.
6.
De
,
B.
,
Banerjee
,
S.
,
Pal
,
T.
,
Verma
,
K. D.
,
Tyagi
,
A.
,
Manna
,
P. K.
, and
Kar
,
K. K.
,
2020
, “
Transition Metal Oxide-/Carbon-/Electronically Conducting Polymer-Based Ternary Composites As Electrode Materials for Supercapacitors
,”
Springer Ser. Mater. Sci.
,
302
(
1065
), pp.
387
434
.
7.
Farma
,
R.
,
Husni
,
H.
,
Apriyani
,
I.
,
Awitdrus
,
A.
, and
Taer
,
E.
,
2021
, “
Biomass Waste-Derived Rubber Seed Shell Functionalized Porous Carbon As an Inexpensive and Sustainable Energy Material for Supercapacitors
,”
J. Electron. Mater.
,
50
(
12
), pp.
6910
6919
.
8.
Deliyanni
,
E. A.
,
2019
, “
Low-Cost Activated Carbon From Rice Wastes in Liquid-Phase Adsorption
,”
Interface Sci. Technol.
,
30
(
5
), pp.
101
123
.
9.
Celzard
,
A.
,
Fierro
,
V.
,
Marêché
,
J. F.
, and
Furdin
,
G.
,
2007
, “
Advanced Preparative Strategies for Activated Carbons Designed for the Adsorptive Storage of Hydrogen
,”
Adsorpt. Sci. Technol.
,
2
(
4
), pp.
129
142
.
10.
Suwandi
,
D. A.
,
Taer
,
E.
,
Farma
,
R.
, and
Syahputra
,
R. F.
,
2021
, “
Effect of Aqueous Electrolyte to the Supercapacitor Electrode Performance Made From Sugar Palm Fronds Waste
,”
J. Phys. Conf. Ser.
,
1951
(
1
), pp.
1
8
.
11.
Farma
,
R.
,
Apriyani
,
I.
,
Awitdrus
,
A.
,
Taer
,
E.
, and
Apriwandi
,
A.
,
2022
, “
Hemicellulosa-Derived Arenga Pinnata Bunches as Free-Standing Carbon Nanofiber Membranes for Electrode Material Supercapacitors
,”
Sci. Rep.
,
12
(
1
), pp.
1
11
.
12.
Chaitra
,
K.
,
Vinny
,
T. R.
,
Sivaraman
,
P.
,
Reddy
,
N.
,
Hu
,
C.
,
Venkatesh
,
K.
,
Vivek
,
S. C.
,
Nagaraju
,
N.
, and
Kathyayini
,
N.
,
2017
, “
KOH Activated Carbon Derived From Biomass-Banana Fibers As an Efficient Negative Electrode in High Performance Asymmetric Supercapacitor
,”
J. Energy Chem.
,
26
(
1
), pp.
56
62
.
13.
Chen
,
H.
,
Yu
,
F.
,
Wang
,
G.
,
Chen
,
L.
,
Dai
,
B.
, and
Peng
,
S.
,
2018
, “
Nitrogen and Sulfur Self-Doped Activated Carbon Directly Derived From Elm Flower for High-Performance Supercapacitors
,”
ACS Omega
,
3
(
4
), pp.
4724
4732
.
14.
Baig
,
M. M.
, and
Gul
,
I. H.
,
2021
, “
Conversion of Wheat Husk to High Surface Area Activated Carbon for Energy Storage in High-Performance Supercapacitors
,”
Biomass Bioenergy
,
144
, p.
105909
.
15.
Song
,
X.
,
Ma
,
X.
,
Li
,
Y.
,
Ding
,
L.
, and
Jiang
,
R.
,
2019
, “
Tea Waste Derived Microporous Active Carbon With Enhanced Double-Layer Supercapacitor Behaviors
,”
Appl. Surf. Sci.
,
487
(
14
), pp.
189
197
.
16.
Guo
,
N.
,
Luo
,
W.
,
Guo
,
R.
,
Qiu
,
D.
,
Zhao
,
Z.
,
Wang
,
L.
,
Jia
,
D.
, and
Guo
,
J.
,
2020
, “
Interconnected and Hierarchical Porous Carbon Derived From Soybean Root for Ultrahigh Rate Supercapacitors
,”
J. Alloys Compd.
,
834
, p.
155115
.
17.
Rajasekaran
,
S. J.
, and
Raghavan
,
V.
,
2020
, “
Facile Synthesis of Activated Carbon Derived From Eucalyptus Globulus Seed As Efficient Electrode Material for Supercapacitors
,”
Diam. Relat. Mater.
,
109
, p.
108038
.
18.
Islam
,
M. A.
,
Ong
,
H. L.
,
Villagracia
,
A. R.
,
Khairul
,
K. A.
,
Ganganboina
,
A. B.
, and
Doong
,
R. A.
,
2021
, “
Biomass-Derived Cellulose Nanofibrils Membrane From Rice Straw As Sustainable Separator for High Performance Supercapacitor
,”
Ind. Crops Prod.
,
170
, p.
113694
.
19.
Khalid
,
M.
,
Paul
,
R.
,
Honorato
,
A. M. B.
, and
Varela
,
H.
,
2020
, “
Pinus Nigra Pine Derived Hierarchical Carbon Foam for High Performance Supercapacitors
,”
J. Electroanal. Chem.
,
863
, p.
114053
.
20.
Yan
,
J.
,
Fang
,
Y. Y.
,
Wang
,
S. W.
,
Wu
,
S. D.
,
Wang
,
L. X.
,
Zhang
,
Y.
,
Luo
,
H. W.
, et al
,
2020
, “
Nitrogen-Doped Oxygen-Rich Activated Carbon Derived From Longan Shell for Supercapacitors
,”
Int. J. Electrochem. Sci.
,
15
(
3
), pp.
1982
1995
.
21.
Li
,
L.
,
Hu
,
X.
,
Guo
,
N.
,
Chen
,
S.
,
Yu
,
Y.
, and
Yang
,
C.
,
2021
, “
Synthesis O/S/N Doped Hierarchical Porous Carbons From Kelp Via Two-Step Carbonization for High Rate Performance Supercapacitor
,”
J. Mater. Res. Technol.
,
15
, pp.
6918
6928
.
22.
Kueasook
,
R.
,
Rattanachueskul
,
N.
,
Chanlek
,
N.
,
Dechtrirat
,
D.
,
Watcharin
,
W.
,
Amornpitoksuk
,
P.
, and
Chuenchom
,
L.
,
2020
, “
Green and Facile Synthesis of Hierarchically Porous Carbon Monoliths Via Surface Self-Assembly on Sugarcane Bagasse Scaffold: Influence of Mesoporosity on Efficiency of Dye Adsorption
,”
Microporous Mesoporous Mater.
,
296
, p.
110005
.
23.
Qu
,
D.
,
2002
, “
Studies of the Activated Mesocarbon Microbeads Used in Double-Layer Supercapacitors
,”
J. Power Sources
,
109
(
2
), pp.
403
411
.
24.
Jiang
,
L.
,
Sheng
,
L.
, and
Fan
,
Z.
,
2017
, “
Biomass-Derived Carbon Materials With Structural Diversities and Their Applications in Energy Storage
,”
Sci. China Mater.
,
5
(
2
), pp.
133
158
.
25.
Wang
,
Y.
,
Qu
,
Q.
,
Gao
,
S.
,
Tang
,
G.
, and
Liu
,
K.
,
2019
, “
Biomass Derived Carbon As Binder-Free Electrode Materials for Supercapacitors
,”
Carbon
,
155
(
2
), pp.
706
726
.
26.
Gopalakrishnan
,
A.
,
Raju
,
T. D.
, and
Badhulika
,
S.
,
2020
, “
Green Synthesis of Nitrogen, Sulfur-Co-Doped Worm-Like Hierarchical Porous Carbon Derived From Ginger for Outstanding Supercapacitor Performance
,”
Carbon
,
168
(
18
), pp.
209
219
.
27.
Shang
,
Z.
,
An
,
X.
,
Zhang
,
H.
,
Shen
,
M.
,
Baker
,
F.
,
Liu
,
Y.
,
Liu
,
L.
, et al
,
2020
, “
Houttuynia-Derived Nitrogen-Doped Hierarchically Porous Carbon for High-Performance Supercapacitor
,”
Carbon
,
161
(
8
), pp.
62
70
.
28.
Lin
,
Y.
,
Chen
,
Z.
,
Yu
,
C.
, and
Zhong
,
W.
,
2020
, “
Facile Synthesis of High Nitrogen-Doped Content, Mesopore-Dominated Biomass-Derived Hierarchical Porous Graphitic Carbon for High Performance Supercapacitors
,”
Electrochim. Acta
,
334
, p.
135615
.
29.
Luo
,
L.
,
Luo
,
L.
,
Deng
,
J.
,
Chen
,
T.
,
Du
,
G.
,
Fan
,
M.
, and
Zhao
,
W.
,
2021
, “
High Performance Supercapacitor Electrodes Based on B/N Co-Doped Biomass Porous Carbon Materials by KOH Activation and Hydrothermal Treatment
,”
Int. J. Hydrogen Energy
,
46
(
63
), pp.
31927
31937
.
30.
Wang
,
Y.
,
Jiang
,
H.
,
Ye
,
S.
,
Zhou
,
J.
,
Chen
,
J.
,
Zeng
,
Q.
,
Yang
,
H.
, and
Liang
,
T.
,
2019
, “
N-doped Porous Carbon Derived From Walnut Shells With Enhanced Electrochemical Performance for Supercapacitor
,”
Funct. Mater. Lett.
,
12
(
3
), p.
1950042
.
31.
Yang
,
X.
,
Wang
,
Q.
,
Lai
,
J.
,
Cai
,
Z.
,
Lv
,
J.
,
Chen
,
X.
,
Chen
,
Y.
,
Zheng
,
X.
,
Huang
,
B.
, and
Lin
,
G.
,
2020
, “
Nitrogen-Doped Activated Carbons Via Melamine-Assisted NaOH/KOH/Urea Aqueous System for High Performance Supercapacitors
,”
Mater. Chem. Phys.
,
250
, p.
123201
.
32.
Raj
,
F. R. M. S.
,
Boopathi
,
G.
,
Jaya
,
N. V.
,
Kalpana
,
D.
, and
Pandurangan
,
A.
,
2020
, “
N, S Codoped Activated Mesoporous Carbon Derived From the Datura Metel Seed Pod As Active Electrodes for Supercapacitors
,”
Diam. Relat. Mater.
,
102
, p.
107687
.
33.
Divya
,
P.
, and
Rajalakshmi
,
R.
,
2020
, “
Renewable Low Cost Green Functional Mesoporous Electrodes From Solanum Lycopersicum Leaves for Supercapacitors
,”
J. Energy Storage
,
27
, p.
101149
.
34.
Ahmed
,
S.
,
Ahmed
,
A.
, and
Rafat
,
M.
,
2018
, “
Supercapacitor Performance of Activated Carbon Derived From Rotten Carrot in Aqueous, Organic and Ionic Liquid Based Electrolytes
,”
J. Saudi Chem. Soc.
,
22
(
8
), pp.
993
1002
.
35.
Farma
,
R.
,
Lestari
,
A. N.
, and
Apriyani
,
I.
,
2021
, “
Supercapacitor Cell Electrodes Derived fromNipah Fruticans Fruit Coir Biomass for EnergyStorage Applications using Acidic and BasicElectrolytes
,”
J. Phys. Conf. Ser.
,
2049
(
1
), pp.
1
8
.
36.
Apriwandi
,
A.
,
Taer
,
E.
,
Farma
,
R.
,
Setiadi
,
R. N.
, and
Amiruddin
,
E.
,
2021
, “
A Facile Approach of Micro-Mesopores Structure Binder-Free Coin/Monolith Solid Design Activated Carbon for Electrode Supercapacitor
,”
J. Energy Storage
,
40
(
1
), p.
102823
.
You do not currently have access to this content.