Abstract

The inconsistency of cells in the battery pack is one of the main causes of battery failure. In practical applications, the terminal voltage is an important parameter that is easy to obtain and can characterize the inconsistency of cells. In this paper, a fault diagnosis method based on piecewise dimensionality reduction and outlier identification is proposed according to the voltage inconsistency of cells in the battery pack. This method uses a piecewise aggregate approximation (PAA) algorithm with a shift factor to reduce the dimension of the cell voltage time series, after which a deletion mechanism is designed based on the clustering algorithm and outlier identification to calculate the clustering quality after deleting each cell, reflecting the deviate degree of each cell. In addition, a safety management strategy is designed based on the Z-score method, and an abnormality coefficient is set to evaluate the inconsistency of cells. The effectiveness of the proposed diagnosis method is verified by monitoring the voltage data of two real-world electric vehicles. The verification results show that the method can not only detect the inconsistency before the failure of the faulty cell in the battery pack in advance, but also reduce the risk of computational explosion caused by the voltage time series and accurately locate the faulty cell.

References

1.
Zhu
,
X.
,
Wang
,
H.
,
Wang
,
X.
,
Gao
,
Y.
,
Allu
,
S.
,
Cakmak
,
E.
, and
Wang
,
Z.
,
2020
, “
Internal Short Circuit and Failure Mechanisms of Lithium-Ion Pouch Cells Under Mechanical Indentation Abuse Conditions
,”
J. Power Sources
,
455
(
C
), p.
227939
.
2.
Xiaoyi
,
X.
,
Dongsheng
,
R.
,
Li
,
W.
,
Xuning
,
F.
, and
Xiangming
,
H.
,
2021
, “
Investigation on Thermal Runaway of Li-Ion Cells Based on LiNi1/3Mn1/3Co1/3O2
,”
ASME J. Electrochem. Energy Convers. Storage
,
18
(
3
), p.
031001
.
3.
Feng
,
X.
,
Zheng
,
S.
,
Ren
,
D.
,
He
,
X.
,
Wang
,
L.
,
Cui
,
H.
,
Liu
,
X.
, et al
,
2019
, “
Investigating the Thermal Runaway Mechanisms of Lithium-Ion Batteries Based on Thermal Analysis Database
,”
Appl. Energy
,
246
, pp.
53
64
.
4.
Hannan
,
M. A.
,
Lipu
,
M. S. H.
,
Hussain
,
A.
, and
Mohamed
,
A.
,
2017
, “
A Review of Lithium-Ion Battery State of Charge Estimation and Management System in Electric Vehicle Applications: Challenges and Recommendations
,”
Renew. Sustain. Energy Rev.
,
78
, pp.
834
854
.
5.
Xiaosong
,
H.
,
Kai
,
Z.
,
Kailong
,
L.
,
Xianke
,
L.
,
Satadru
,
D.
, and
Simona
,
O.
,
2020
, “
Advanced Fault Diagnosis for Lithium-Ion Battery Systems: A Review of Fault Mechanisms, Fault Features, and Diagnosis Procedures
,”
IEEE Ind. Electron. Mag.
,
14
(
3
), pp.
65
91
.
6.
Xiong
,
R.
,
Sun
,
W.
,
Yu
,
Q.
, and
Sun
,
F.
,
2020
, “
Research Progress, Challenges and Prospects of Fault Diagnosis on Battery System of Electric Vehicles
,”
Appl. Energy
,
279
, p.
115855
.
7.
Few
,
S.
,
Schmidt
,
O.
,
Offer
,
G. J.
,
Brandon
,
N.
,
Nelson
,
J.
, and
Gambhir
,
A.
,
2018
, “
Prospective Improvements in Cost and Cycle Life of Off-Grid Lithium-Ion Battery Packs: An Analysis Informed by Expert Elicitations
,”
Energy Pol.
,
114
, pp.
578
590
.
8.
Guijun
,
M.
,
Songpei
,
X.
, and
Cheng
,
C.
,
2021
, “
Fault Detection of Lithium-Ion Battery Packs With a Graph-Based Method
,”
J. Energy Storage
,
43
, p.
103209
.
9.
Chao
,
W.
,
Chunbo
,
Z.
, and
Yunwang
,
G.
,
2017
, “
A New Fault Diagnosis and Prognosis Technology for High-Power Lithium-Ion Battery
,”
IEEE Trans. Plasma Sci.
,
45
(
7
), pp.
1533
1538
.
10.
Garg
,
A.
,
Singh
,
S.
,
Li
,
W.
,
Gao
,
L.
,
Cui
,
X.
,
Wang
,
C.-T.
,
Peng
,
X.
, and
Rajasekar
,
N.
,
2020
, “
Illustration of Experimental, Machine Learning, and Characterization Methods for Study of Performance of Li-Ion Batteries
,”
Int. J. Energy Res.
,
44
(
12
), pp.
9513
9526
.
11.
Qi
,
C.
,
Zhu
,
Y.-L.
,
Gao
,
F.
,
Wang
,
S.-C.
,
Yang
,
K.
, and
Jiao
,
Q.-J.
,
2017
, “
Safety Analysis of Lithium-Ion Battery by Rheology-Mutation Theory Coupling With Fault Tree Method
,”
J. Loss Prevent. Proc. Ind.
,
49
, pp.
603
611
.
12.
Lili
,
H.
,
Lishuo
,
L.
,
Languang
,
L.
,
Xuning
,
F.
,
Xuebing
,
H.
,
Weihan
,
L.
,
Mingxuan
,
Z.
, et al
,
2021
, “
A Review of the Internal Short Circuit Mechanism in Lithium-Ion Batteries: Inducement, Detection and Prevention
,”
Int. J. Energy Res.
,
45
(
11
), pp.
15797
15831
.
13.
Liang
,
Z.
,
Tian
,
G.
,
Guowei
,
C.
, and
Leong
,
H. K.
,
2022
, “
Research on Electric Vehicle Charging Safety Warning Model Based on Back Propagation Neural Network Optimized by Improved Gray Wolf Algorithm
,”
J. Energy Storage
,
49
, p.
104038
.
14.
Tomasov
,
M.
,
Kajanova
,
M.
,
Bracinik
,
P.
, and
Motyka
,
D.
,
2019
, “
Overview of Battery Models for Sustainable Power and Transport Applications
,”
Transp. Res. Procedia
,
40
(
C
), pp.
548
555
.
15.
Liu
,
Z.
, and
He
,
H.
,
2015
, “
Sensor Fault Detection and Isolation for a Lithium-Ion Battery Pack in Electric Vehicles Using Adaptive Extended Kalman Filter
,”
Appl. Energy
,
185
(
P2
), pp.
2033
2044
.
16.
Sbarufatti
,
C.
,
Corbetta
,
M.
,
Giglio
,
M.
, and
Cadini
,
F.
,
2017
, “
Adaptive Prognosis of Lithium-Ion Batteries Based on the Combination of Particle Filters and Radial Basis Function Neural Networks
,”
J. Power Sources
,
344
, pp.
128
140
.
17.
Dey
,
S.
,
Biron
,
Z. A.
,
Tatipamula
,
S.
,
Das
,
N.
,
Mohon
,
S.
,
Ayalew
,
B.
, and
Pisu
,
P.
,
2015
, “
On-Board Thermal Fault Diagnosis of Lithium-Ion Batteries for Hybrid Electric Vehicle Application
,”
IFAC PapersOnLine
,
48
(
15
), pp.
389
394
.
18.
Wang
,
Y.
,
Fang
,
H.
,
Sahinoglu
,
Z.
,
Wada
,
T.
, and
Hara
,
S.
,
2015
, “
Adaptive Estimation of the State of Charge for Lithium-Ion Batteries: Nonlinear Geometric Observer Approach
,”
IEEE Trans. Contr. Sys. Techn.
,
23
(
3
), pp.
948
962
.
19.
Li
,
X.
,
Jiang
,
J.
,
Wang
,
L. Y.
,
Chen
,
D.
,
Zhang
,
Y.
, and
Zhang
,
C.
,
2016
, “
A Capacity Model Based on Charging Process for State of Health Estimation of Lithium Ion Batteries
,”
Appl. Energy
,
177
, pp.
537
543
.
20.
Kim
,
T.
,
Wang
,
Y.
,
Fang
,
H.
,
Sahinoglu
,
Z.
,
Wada
,
T.
,
Hara
,
S.
, and
Qiao
,
W.
,
2015
, “
Model-Based Condition Monitoring for Lithium-Ion Batteries
,”
J. Power Sources
,
295
, pp.
16
27
.
21.
Gao
,
W.
,
Zheng
,
Y.
,
Ouyang
,
M.
,
Li
,
J.
,
Lai
,
X.
, and
Hu
,
X.
,
2019
, “
Micro-Short-Circuit Diagnosis for Series-Connected Lithium-Ion Battery Packs Using Mean-Difference Model
,”
IEEE Trans. Ind. Electron.
,
66
(
3
), pp.
2132
2142
.
22.
Yan
,
W.
,
Zhang
,
B.
,
Wang
,
X.
,
Dou
,
W.
, and
Wang
,
J.
,
2016
, “
Lebesgue-Sampling-Based Diagnosis and Prognosis for Lithium-Ion Batteries
,”
IEEE Trans. Ind. Electron.
,
63
(
3
), pp.
1804
1812
.
23.
Jingwen
,
W.
,
Guangzhong
,
D.
, and
Zonghai
,
C.
,
2020
, “
Lyapunov-Based Thermal Fault Diagnosis of Cylindrical Lithium-Ion Batteries
,”
IEEE Trans. Ind. Electron.
,
67
(
6
), pp.
4670
4679
.
24.
Dey
,
S.
,
Perez
,
H. E.
, and
Moura
,
S. J.
,
2019
, “
Model-Based Battery Thermal Fault Diagnostics: Algorithms, Analysis, and Experiments
,”
IEEE Trans. Control Syst. Technol.
,
27
(
2
), pp.
576
587
.
25.
Xia
,
B.
,
Shang
,
Y.
,
Nguyen
,
T.
, and
Mi
,
C.
,
2017
, “
A Correlation Based Fault Detection Method for Short Circuits in Battery Packs
,”
J. Power Sources
,
337
, pp.
1
10
.
26.
Kang
,
Y.
,
Duan
,
B.
,
Zhou
,
Z.
,
Shang
,
Y.
, and
Zhang
,
C.
,
2019
, “
A Multi-Fault Diagnostic Method Based on an Interleaved Voltage Measurement Topology for Series Connected Battery Packs
,”
J. Power Sources
,
417
, pp.
132
144
.
27.
Li
,
X.
, and
Wang
,
Z.
,
2018
, “
A Novel Fault Diagnosis Method for Lithium-Ion Battery Packs of Electric Vehicles
,”
Measurement
,
116
, pp.
402
411
.
28.
Zhao
,
Y.
,
Liu
,
P.
,
Wang
,
Z.
,
Zhang
,
L.
, and
Hong
,
J.
,
2017
, “
Fault and Defect Diagnosis of Battery for Electric Vehicles Based on Big Data Analysis Methods
,”
Appl. Energy
,
207
, pp.
354
362
.
29.
Yishu
,
Q.
,
Wenjiong
,
C.
,
Peng
,
P.
, and
Fangming
,
J.
,
2021
, “
A Novel Entropy-Based Fault Diagnosis and Inconsistency Evaluation Approach for Lithium-Ion Battery Energy Storage Systems
,”
J. Energy Storage
,
41
, p.
102852
.
30.
Wang
,
Z.
,
Hong
,
J.
,
Liu
,
P.
, and
Zhang
,
L.
,
2017
, “
Voltage Fault Diagnosis and Prognosis of Battery Systems Based on Entropy and Z-Score for Electric Vehicles
,”
Appl. Energy
,
196
, pp.
289
302
.
31.
Shang
,
Y.
,
Lu
,
G.
,
Kang
,
Y.
,
Zhou
,
Z.
,
Duan
,
B.
, and
Zhang
,
C.
,
2020
, “
A Multi-Fault Diagnosis Method Based on Modified Sample Entropy for Lithium-Ion Battery Strings
,”
J. Power Sources
,
446
(
C
), p.
227275
.
32.
Li
,
G.
,
Bräysy
,
O.
,
Jiang
,
L.
,
Wu
,
Z.
, and
Wang
,
Y.
,
2013
, “
Finding Time Series Discord Based on Bit Representation Clustering
,”
Knowl. Based Syst.
,
54
, pp.
243
254
.
You do not currently have access to this content.