Abstract

Superhydrophobic cobalt and cobalt–graphene films were fabricated on copper bipolar plates (BPPs) using potentiostatic electrodeposition to improve their corrosion resistance and surface conductivity. A scanning electron microscope (SEM) was used to study the surface morphology of the prepared superhydrophobic films. The results show that the cobalt film modified by stearic acid (Co-SA) and cobalt–graphene composite modified by stearic acid (Co–G-SA) exhibit micro–nano structures. The results of the Fourier transforming infrared (FTIR) spectrophotometer confirm that the copper substrate was coated by Co-SA and Co–G-SA films. The wettability results of the prepared superhydrophobic films demonstrate that the films display superhydrophobicity, where the fabricated Co-SA and Co–G-SA films have contact angles (CAs) of 159 deg and 165 deg, respectively. Chemical stability, mechanical abrasion resistance, surface conductivity, and corrosion resistance in a simulated proton exchange membrane fuel cells (PEMFCs) environment are significantly higher for copper coated by Co–G-SA film. Because the copper coated with Co–G-SA has a low interfacial contact resistance (ICR) value and a high corrosion resistance, it is thought to be a good choice for PEMFC bipolar plates.

References

1.
Ingle
,
A. V.
,
Raja
,
V. S.
,
Rangarajan
,
J.
, and
Mishra
,
P.
,
2019
, “
Corrosion Resistant Quaternary Al–Cr–Mo–N Coating on Type 316L Stainless Steel Bipolar Plates for Proton Exchange Membrane Fuel Cells
,”
Int. J. Hydrogen Energy
,
45
(
4
), pp.
3094
3107
.
2.
Fontana
,
L. C.
,
Melo
,
H. G. D.
, and
Sch
,
C. G.
,
2020
, “
Corrosion Resistance of Functionally Graded TiN/Ti Coatings for Proton Exchange Membrane Fuel Cells
,”
Int. J. Hydrogen Energy
,
45
(
58
), pp.
33993
34010
.
3.
Zhang
,
P.
,
Hao
,
C.
,
Han
,
Y.
, and
Du
,
F.
,
2020
, “
Electrochemical Behavior and Surface Conductivity of NbC Modified Ti Bipolar Plate for Proton Exchange Membrane Fuel Cell
,”
Surf. Coat. Technol.
,
397
(
9
), p.
126064
.
4.
Jadi
,
S. B.
,
Jaouhari
,
A. E.
,
Aouzal
,
Z.
,
Guerraf
,
A. E.
,
Bouabdallaoui
,
M.
,
Wang
,
R.
,
Bazzaoui
,
E. A.
, and
Bazzaoui
,
M.
,
2020
, “
Electropolymerization and Corrosion Resistance of Polypyrrole on Nickel Bipolar Plate for PEM Fuel Cell Application
,”
Mater. Today Proc.
,
22
(
2
), pp.
52
56
.
5.
Chen
,
Z.
,
Zhang
,
G.
,
Yang
,
W.
,
Xu
,
B.
,
Chen
,
Y.
, and
Yin
,
X.
,
2020
, “
Superior Conducting Polypyrrole Anti-Corrosion Coating Containing Functionalized Carbon Powders for 304 Stainless Steel Bipolar Plates in Proton Exchange Membrane Fuel Cells
,”
Chem. Eng. J.
,
393
(
3
), p.
124675
.
6.
Dong
,
H.
,
He
,
S.
,
Wang
,
X.
,
Zhang
,
C.
, and
Sun
,
D.
,
2020
, “
Study on Conductivity and Corrosion Resistance of N-Doped and Cr/N Co-Doped DLC Films on Bipolar Plates for PEMFC
,”
Diam. Relat. Mater.
,
110
(
12
), p.
108156
.
7.
Sadeghian
,
Z.
,
Hadidi
,
M. R.
, and
Salehzadeh
,
D.
,
2020
, “
Hydrophobic Octadecylamine-Functionalized Graphene/TiO2 Hybrid Coating for Corrosion Protection of Copper Bipolar Plates in Simulated Proton Exchange Membrane Fuel Cell Environment
,”
Int. J. Hydrogen Energy
,
45
(
30
), pp.
15380
15389
.
8.
Lv
,
B.
,
Shao
,
Z.
,
He
,
L.
,
Gou
,
Y.
, and
Sun
,
S.
,
2020
, “
A Novel Graphite/Phenolic Resin Bipolar Plate Modified by Doping Carbon Fibers for the Application of Proton Exchange Membrane Fuel Cells
,”
Prog. Nat. Sci. Mater. Int.
,
10
(
1
), pp.
1
6
.
9.
Manso
,
A. P.
,
Marzo
,
F. F.
,
Garicano
,
X.
,
Alegre
,
C.
, and
Lozano
,
A.
,
2020
, “
Corrosion Behavior of Tantalum Coatings on AISI 316L Stainless Steel Substrate for Bipolar Plates of PEM Fuel Cells
,”
Int. J. Hydrogen Energy
,
45
(
40
), pp.
20679
20691
.
10.
Barranco
,
J.
,
Barreras
,
F.
,
Lozano
,
A.
, and
Maza
,
M.
,
2011
, “
Influence of CrN-Coating Thickness on the Corrosion Resistance Behaviour of Aluminium-Based Bipolar Plates
,”
J. Power Sources
,
196
(
9
), pp.
4283
4289
.
11.
Baroutaji
,
A.
,
Carton
,
J. G.
,
Oladoye
,
A. M.
,
Stokes
,
J.
,
Twomey
,
B.
, and
Olabi
,
A. G.
,
2017
, “
Ex-situ Evaluation of PTFE Coated Metals in a Proton Exchange Membrane Fuel Cell Environment
,”
J. Power Sources
,
302
(
8
), pp.
180
188
.
12.
Wang
,
J.
,
Min
,
L.
,
Fang
,
F.
,
Zhang
,
W.
, and
Wang
,
Y.
,
2019
, “
Electrodeposition of Graphene Nano-Thick Coating for Highly Enhanced Performance of Titanium Bipolar Plates in Fuel Cells
,”
Int. J. Hydrogen Energy
,
44
(
31
), pp.
16909
16917
.
13.
Pan
,
T. J.
,
Zuo
,
X. W.
,
Wang
,
T.
,
Hu
,
J.
,
Chen
,
Z. D.
, and
Ren
,
Y. J.
,
2016
, “
Electrodeposited Conductive Polypyrrole/Polyaniline Composite Film for the Corrosion Protection of Copper Bipolar Plates in Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
302
(
1
), pp.
180
188
.
14.
Ren
,
Y. J.
,
Anisur
,
M. R.
,
Qiu
,
W.
,
He
,
J. J.
,
Al-saadi
,
S.
, and
Raman
,
R. K. S.
,
2017
, “
Degradation of Graphene Coated Copper in Simulated Proton Exchange Membrane Fuel Cell Environment: Electrochemical Impedance Spectroscopy Study
,”
J. Power Sources
,
362
(
15
), pp.
366
372
.
15.
Johnson
,
N. A. B.
,
Das
,
S. K.
, and
Sen
,
A. K.
,
2017
, “
Effects of Copper Corrosion in the Performance of Polymer Electrolyte Membrane Fuel Cells
,”
ECS Trans.
,
80
(
8
), pp.
477
483
.
16.
Mohamed
,
M. E.
, and
Abd-El-Nabey
,
B. A.
,
2020
, “
Facile and Eco-Friendly Method for Fabrication of Superhydrophobic Surface on Copper Metal
,”
ECS J. Solid State Sci. Technol.
,
9
(
6
), p.
061006
.
17.
Lomga
,
J.
,
Varshney
,
P.
,
Nanda
,
D.
,
Satapathy
,
M.
,
Mohapatra
,
S. S.
, and
Kumar
,
A.
,
2017
, “
Fabrication of Durable and Regenerable Superhydrophobic Coatings With Excellent Self-Cleaning and Anti-fogging Properties for Aluminium Surfaces
,”
J. Alloys Compd.
,
702
, pp.
161
170
.
18.
Xu
,
S.
,
Wang
,
Q.
,
Wang
,
N.
, and
Zheng
,
X.
,
2019
, “
Fabrication of Superhydrophobic Green Surfaces With Good Self-Cleaning, Chemical Stability and Anti-Corrosion Properties
,”
J. Mater. Sci.
,
54
(
19
), pp.
13006
13016
.
19.
Liravi
,
M.
,
Pakzad
,
H.
,
Moosavi
,
A.
, and
Nouri-Borujerdi
,
A.
,
2020
, “
A Comprehensive Review on Recent Advances in Superhydrophobic Surfaces and Their Applications for Drag Reduction
,”
Prog. Org. Coat.
,
140
(
12
), p.
105537
.
20.
Yin
,
X.
,
Yu
,
S.
,
Wang
,
K.
,
Cheng
,
R.
, and
Lv
,
Z.
,
2020
, “
Fluorine-Free Preparation of Self-Healing and Anti-fouling Superhydrophobic Ni3S2 Coating on 304 Stainless Steel
,”
Chem. Eng. J.
,
394
(
3
), p.
124925
.
21.
Hou
,
W.
,
Shen
,
Y.
,
Tao
,
J.
,
Xu
,
Y.
,
Jiang
,
J.
,
Chen
,
H.
, and
Jia
,
Z.
,
2020
, “
Anti-icing Performance of the Superhydrophobic Surface With Micro-Cubic Array Structures Fabricated by Plasma Etching
,”
Colloids Surf. A
,
586
(
9
), p.
124180
.
22.
Lu
,
Y.
,
Guan
,
Y. C.
,
Li
,
Y.
,
Yang
,
L. J.
,
Wang
,
M. L.
, and
Wang
,
Y.
,
2020
, “
Nanosecond Laser Fabrication of Superhydrophobic Surface on 316L Stainless Steel and Corrosion Protection Application
,”
Colloids Surf. A
,
604
(
7
), p.
125259
.
23.
Uddin
,
M. N.
,
Desai
,
F. J.
, and
Asmatulu
,
E.
,
2020
, “
Biomimetic Electrospun Nanocomposite Fibers From Recycled Polystyrene Foams Exhibiting Superhydrophobicity
,”
Energy Ecol. Environ.
,
5
(
1
), pp.
1
11
.
24.
Mosayebi
,
E.
,
Azizian
,
S.
, and
Noei
,
N.
,
2020
, “
Preparation of Robust Superhydrophobic Sand by Chemical Vapor Deposition of Polydimethylsiloxane for Oil/Water Separation
,”
Macromol. Mater. Eng.
,
305
(
12
), p.
2000425
.
25.
Saji
,
V. S.
,
2020
, “
Superhydrophobic Surfaces and Coatings by Electrochemical Anodic Oxidation and Plasma Electrolytic Oxidation
,”
Adv. Colloid Interface Sci.
,
283
, p.
102245
.
26.
Pratiwi
,
N.
,
Zulhadjri
,
A.
,
Admi
,
S.
, and
Wellia
,
D. V.
,
2020
, “
Self-Cleaning Material Based on Superhydrophobic Coatings Through an Environmentally Friendly Sol–Gel Method
,”
J. Sol–Gel Sci. Technol.
,
96
(
3
), pp.
669
678
.
27.
Seyfi
,
J.
,
Panahi-Sarmad
,
M.
,
OraeiGhodousi
,
A.
,
Goodarzi
,
V.
,
Khonakdar
,
H. A.
,
Asefnejad
,
A.
, and
Shojaei
,
S.
,
2019
, “
Antibacterial Superhydrophobic Polyvinyl Chloride Surfaces Via the Improved Phase Separation Process Using Silver Phosphate Nanoparticles
,”
Colloids Surf. B
,
183
(
4
), p.
110438
.
28.
Xue
,
H.
,
Wang
,
T.
,
Guo
,
H.
,
Fan
,
X.
,
Zhu
,
Z.
,
Pan
,
X.
, and
He
,
J.
,
2014
, “
In-Situ Synthesis of Graphene/Carbon Nanotube Modified Ordered Mesoporous Carbon As Protective Film of Stainless Steel Bipolar Plates for Proton Exchange Membrane Fuel Cells
,”
RSC Adv.
,
4
(
101
), pp.
57724
57732
.
29.
Kakati
,
B. K.
,
Ghosh
,
A.
, and
Verma
,
A.
,
2013
, “
Efficient Composite Bipolar Plate Reinforced With Carbon Fiber and Graphene for Proton Exchange Membrane Fuel Cell
,”
Int. J. Hydrogen Energy
,
38
(
22
), pp.
9362
9369
.
30.
Vazquez-Arenas
,
J.
,
Altamirano-Garcia
,
L.
,
Treeratanaphitak
,
T.
,
Pritzker
,
M.
,
Luna-Sánchez
,
R.
, and
Cabrera-Sierra
,
R.
,
2012
, “
Co–Ni Alloy Electrodeposition Under Different Conditions of PH, Current and Composition
,”
Electrochim. Acta
,
65
, pp.
234
243
.
31.
Yang
,
J.
,
Bao
,
C.
,
Zhu
,
K.
,
Yu
,
T.
,
Li
,
F.
,
Liu
,
J.
,
Li
,
Z.
, and
Zou
,
Z.
,
2014
, “
High Catalytic Activity and Stability of Nickel Sulfide and Cobalt Sulfide Hierarchical Nanospheres on the Counter Electrodes for Dye-Sensitized Solar Cells
,”
Chem. Commun.
,
50
(
37
), pp.
4824
4826
.
32.
An
,
Z. G.
,
Zhang
,
J. J.
, and
Pan
,
S. L.
,
2010
, “
Simple Synthesis and Characterization of Highly Ordered Sisal-Like Cobalt Superstructures
,”
Mater. Chem. Phys.
,
123
(
2–3
), pp.
795
800
.
33.
Cheng
,
G.
,
2014
, “
Facile Synthesis of Leaf-Like Cobalt Microstructures at Low Temperature
,”
Micro Nano Lett.
,
9
(
5
), pp.
312
314
.
34.
Yu
,
P.
,
Lowe
,
S. E.
,
Simon
,
G. P.
, and
Zhong
,
Y. L.
,
2015
, “
Electrochemical Exfoliation of Graphite and Production of Functional Graphene
,”
Curr. Opin. Colloid Interface Sci.
,
20
(
5–6
), pp.
329
338
.
35.
Mohamed
,
M. E.
, and
Nabey
,
B. A. A. E.
,
2021
, “
Fabrication of Durable Superhydrophobic/Oleophilic Cotton Fabric for Highly Efficient Oil/Water Separation
,”
Water Sci. Technol.
,
83
(
1
), pp.
90
99
.
36.
Jayan
,
J. S.
,
Jayadev
,
D.
,
Pillai
,
Z. S.
,
Joseph
,
K.
, and
Saritha
,
A.
,
2019
,
The Stability of the Superhydrophobic Surfaces
,
Elsevier Inc.
,
Amsterdam
, pp.
123
159
.
37.
Cao
,
C.
, and
Cheng
,
J.
,
2018
, “
Fabrication of Robust Surfaces With Special Wettability on Porous Copper Substrates for Various Oil/Water Separations
,”
Chem. Eng. J.
,
347
, pp.
585
594
.
38.
Wan
,
S.
,
Cong
,
Y.
,
Jiang
,
D.
, and
Dong
,
Z. H.
,
2018
, “
Weathering Barrier Enhancement of Printed Circuit Board by Fluorinated Silica Based Superhydrophobic Coating
,”
Colloids Surfaces A Physicochem. Eng. Asp.
,
538
, pp.
628
638
.
39.
Cassie
,
A. B. D.
, and
Baxter
,
S.
,
1944
, “
Wettability of Porous Surfaces
,”
Trans. Faraday Soc.
,
40
(
5
), pp.
546
551
.
40.
Zhu
,
J.
,
Liu
,
B.
,
Li
,
L.
,
Zeng
,
Z.
,
Zhao
,
W.
,
Wang
,
G.
, and
Guan
,
X.
,
2016
, “
Simple and Green Fabrication of a Superhydrophobic Surface by One-Step Immersion for Continuous Oil/Water Separation
,”
J. Phys. Chem. A
,
120
(
28
), pp.
5617
5623
.
41.
Valencia
,
C.
,
Valencia
,
C. H.
,
Zuluaga
,
F.
,
Valencia
,
M. E.
,
Mina
,
J. H.
, and
Grande-Tovar
,
C. D.
,
2018
, “
Synthesis and Application of Scaffolds of Chitosan-Graphene Oxide by the Freeze-Drying Method for Tissue Regeneration
,”
Molecules
,
23
(
10
), p.
2651
.
42.
Flitt
,
H. J.
, and
Schweinsberg
,
D. P.
,
2005
, “
Evaluation of Corrosion Rate From Polarisation Curves Not Exhibiting a Tafel Region
,”
Corros. Sci.
,
47
(
12
), pp.
3034
3052
.
43.
McCafferty
,
E.
,
2005
, “
Validation of Corrosion Rates Measured by the Tafel Extrapolation Method
,”
Corros. Sci.
,
47
(
12
), pp.
3202
3215
.
44.
Fetouh
,
H. A.
,
Abd-El-Nabey
,
B.
,
Goher
,
Y. M.
, and
Karam
,
M. S.
,
2018
, “
An Electrochemical Investigation in the Anticorrosive Properties of Silver Nanoparticles for the Acidic Corrosion of Aluminium
,”
J. Electrochem.
,
24
, pp.
89
100
.
45.
Ou
,
J.
,
Liu
,
M.
,
Li
,
W.
,
Wang
,
F.
,
Xue
,
M.
, and
Li
,
C.
,
2012
, “
Corrosion Behavior of Superhydrophobic Surfaces of Ti Alloys in NaCl Solutions
,”
Appl. Surf. Sci.
,
258
(
10
), pp.
4724
4728
.
46.
Ghiamati Yazdi
,
E.
,
Ghahfarokhi
,
Z. S.
, and
Bagherzadeh
,
M.
,
2017
, “
Protection of Carbon Steel Corrosion in 3.5% NaCl Medium by Aryldiazonium Grafted Graphene Coatings
,”
New J. Chem.
,
41
(
21
), pp.
12470
12480
.
47.
Abd-El-Nabey
,
B. A.
,
Goher
,
Y. M.
,
Fetouh
,
H. A.
, and
Karam
,
M. S.
,
2015
, “
Anticorrosive Properties of Chitosan for the Acid Corrosion of Aluminium
,”
Port. Electrochim. Acta
,
33
(
4
), pp.
231
239
.
You do not currently have access to this content.