Abstract

As enablers of electric vehicles, lithium-ion batteries are drawing much attention for their high energy density and low self-discharge. However, “range anxiety” has remained a significant hindrance to its further development. As an alternative to increasing capacity, fast charging seems a reasonable solution. However, challenges remain due to the conflict between high charging rate and excessive capacity loss. In the past, enormous efforts have been carried out to resolve the dispute between high charging rates and large capacity losses by either improving the battery design or optimizing the charging/discharging protocols. In contrast, this study proposes a novel control co-design framework with adaptive surrogate modeling to address the challenges and to generate the systematic optimal battery design and the corresponding charging protocol simultaneously. The proposed method is ideal for lithium-ion battery systems to offer the improved performances as compared with traditional sequential optimization approaches due to the integration of strong coupling effects between electrode design and control optimization. The integrated adaptive surrogate modeling technique allows model reduction for efficient optimal control and simulation solutions. Meanwhile, it preserves an accurate mapping from the first-principle model to the reduced-order model. A hybrid model like this captures the multiscale nature of the cell, that is, micro-scale parameters affect the macro-scale behavior. It reduces the computational cost significantly. The battery co-design problem is formulated as a nested problem, where the inner-loop solves an open-loop optimal control problem and the outer-loop optimizes the plant design variables. The results show that system-level optimal design can be obtained for minimized charging time at various levels of health requirement.

References

1.
Tarascon
,
J. M.
, and
Armand
,
M.
,
2011
, “Issues and Challenges Facing Rechargeable Lithium Batteries,”
Materials for Sustainable Energy
,
V.
Dusastre
, ed.,
Nature Publishing Group
,
UK
, pp.
171
179
.
2.
Thackeray
,
M. M
,
Wolverton
,
C.
, and
Isaacs
,
E. D.
,
2012
, “
Electrical Energy Storage for Transportation—Approaching the Limits of, and Going Beyond, Lithium-Ion Batteries
,”
Energy. Environ. Sci.
,
5
(
7
), pp.
7854
7863
.
3.
Broussely
,
M.
,
Biensan
,
Ph
,
Bonhomme
,
F
,
Blanchard
,
Ph
,
Herreyre
,
S
,
Nechev
,
K
, and
Staniewicz
,
R. J.
,
2005
, “
Main Aging Mechanisms in Li Ion Batteries
,”
J. Power Sources
,
146
(
1–2
), pp.
90
96
.
4.
Zhang
,
H.
, and
Braun
,
P. V.
,
2012
, “
Three-Dimensional Metal Scaffold Supported Bicontinuous Silicon Battery Anodes
,”
Nano. Lett.
,
12
(
6
), pp.
2778
2783
.
5.
Zheng
,
Z.
,
Chen
,
B.
,
Fritz
,
N.
,
Gurumukhi
,
Y.
,
Cook
,
J.
,
Ates
,
M. N.
,
Miljkovic
,
N.
,
Braun
,
P. V.
, and
Wang
,
P.
,
2019
, “
Lithiation Induced Stress Concentration for 3D Metal Scaffold Structured Silicon Anodes
,”
J. Electrochem. Soc.
,
166
(
10
), pp.
A2083
A2090
.
6.
Zhao
,
H.
,
Yuan
,
W.
, and
Liu
,
G.
,
2015
, “
Hierarchical Electrode Design of High-Capacity Alloy Nanomaterials for Lithium-Ion Batteries
,”
Nano Today
,
10
(
2
), pp.
193
212
.
7.
Wrodnigg
,
G. H.
,
Besenhard
,
J. O.
, and
Winter
,
M.
,
1999
, “
Ethylene Sulfite as Electrolyte Additive for Lithium-Ion Cells With Graphitic Anodes
,”
J. Electrochem. Soc.
,
146
(
2
), pp.
470
472
.
8.
Zheng
,
J.
,
Engelhard
,
M. H.
,
Mei
,
D.
,
Jiao
,
S.
,
Polzin
,
B. J.
,
Zhang
,
J.-G.
, and
Xu
,
W.
,
2017
, “
Electrolyte Additive Enabled Fast Charging and Stable Cycling Lithium Metal Batteries
,”
Nat. Energy
,
2
(
3
), pp.
1
8
.
9.
Xu
,
M.
,
Wang
,
R.
,
Reichman
,
B.
, and
Wang
,
X.
,
2018
, “
Modeling the Effect of Two-Stage Fast Charging Protocol on Thermal Behavior and Charging Energy Efficiency of Lithium-Ion Batteries
,”
J. Energy Storage
,
20
(
32
), pp.
298
309
.
10.
Kim
,
N.
,
Chae
,
S.
,
Ma
,
J.
,
Ko
,
M.
, and
Cho
,
J.
,
2017
, “
Fast-Charging High-Energy Lithium-Ion Batteries Via Implantation of Amorphous Silicon Nanolayer in Edge-Plane Activated Graphite Anodes
,”
Nat. Commun.
,
8
(
1
), pp.
1
10
.
11.
Yamada
,
Y.
,
Furukawa
,
K.
,
Sodeyama
,
K.
,
Kikuchi
,
K.
,
Yaegashi
,
M.
,
Tateyama
,
Y.
, and
Yamada
,
A.
,
2014
, “
Unusual Stability of Acetonitrile-Based Superconcentrated Electrolytes for Fast-Charging Lithium-Ion Batteries
,”
J. Am. Chem. Soc.
,
136
(
13
), pp.
5039
5046
.
12.
Yang
,
X.-G.
,
Liu
,
T.
,
Gao
,
Y.
,
Ge
,
S.
,
Leng
,
Y.
,
Wang
,
D.
, and
Wang
,
C.-Y.
,
2019
, “
Asymmetric Temperature Modulation for Extreme Fast Charging of Lithium-Ion Batteries
,”
Joule
,
3
(
12
), pp.
3002
3019
.
13.
Garcia-Sanz
,
M.
,
2019
, “
Control Co-design: An Engineering Game Changer
,”
Adv. Control Appl.: Eng. Ind. Syst.
,
1
(
1
), p.
e18
.
14.
Fathy
,
H. K.
,
Reyer
,
J. A.
,
Paplambros
,
P. Y.
, and
Ulsoy
,
A. G.
,
2001
, “
On the Coupling Between the Plant and Controller Optimization Problems
,”
Proceedings of the 2001 American Control Conference
,
Arlington, VA
,
June 25–27
, Vol.
3
, pp.
1864
1869
.
15.
Fathy
,
H. K.
,
Papalambros
,
P. Y.
,
Ulsoy
,
A. G.
, and
Hrovat
,
D.
,
2003
, “
Nested Plant/Controller Optimization With Application to Combined Passive/Active Automotive Suspensions
,”
American Control Conference
,
Denver, CO
,
IEEE
, pp.
3375
3380
.
16.
Yan
,
H.-S.
, and
Yan
,
G.-J.
,
2009
, “
Integrated Control and Mechanism Design for the Variable Input-Speed Servo Four-Bar Linkages
,”
Mechatronics
,
19
(
2
), pp.
274
285
.
17.
Allison
,
J. T
,
2013
, “
Plant-Limited Co-design of an Energy-Efficient Counterbalanced Robotic Manipulator
,”
ASME. J. Mech. Des.
,
135
(
10
), p.
101003
.
18.
Allison
,
J. T.
,
Guo
,
T.
, and
Han
,
Z.
,
2014
, “
Co-design of an Active Suspension Using Simultaneous Dynamic Optimization
,”
ASME. J. Mech. Des.
,
136
(
8
), p.
081003
.
19.
Deshmukh
,
A. P.
, and
Allison
,
J. T.
,
2016
, “
Multidisciplinary Dynamic Optimization of Horizontal Axis Wind Turbine Design
,”
Struct. Multidiscipl. Optim.
,
53
(
1
), pp.
15
27
.
20.
Cui
,
T.
,
Allison
,
J. T.
, and
Wang
,
P.
,
2020
, “
A Comparative Study of Formulations and Algorithms for Reliability-Based Co-design Problems
,”
ASME J. Mech. Des.
,
142
(
3
), p.
031104
.
21.
Cui
,
T.
,
Allison
,
J. T.
, and
Wang
,
P.
,
2020
, “
Reliability-Based Co-design of State-Constrained Stochastic Dynamical Systems
,”
AIAA Scitech 2020 Forum
,
Orlando, FL
,
Jan. 6–10
, p.
0413
.
22.
Azad
,
S.
, and
Alexander-Ramos
,
M. J.
,
2020
, “
A Single-Loop Reliability-Based MDSDO Formulation for Combined Design and Control Optimization of Stochastic Dynamic Systems
,”
ASME J. Mech. Des.
,
143
(
2
), p. 021703.
23.
Goyal
,
R.
,
Majji
,
M.
, and
Skelton
,
R. E.
,
2021
, “
Integrating Structure, Information Architecture and Control Design: Application to Tensegrity Systems
,”
Mech. Syst. Signal. Process.
,
161
(
5
), p.
107913
.
24.
Chen
,
X.
,
Zhou
,
H.
, and
Li
,
Y.
,
2019
, “
Effective Design Space Exploration of Gradient Nanostructured Materials Using Active Learning Based Surrogate Models
,”
Mater. Des.
,
183
, p.
108085
.
25.
Li
,
Y.
,
Xiao
,
W.
, and
Wang
,
P.
,
2018
, “
Uncertainty Quantification of Artificial Neural Network Based Machine Learning Potentials
,”
Proceedings of the ASME 2018 International Mechanical Engineering Congress and Exposition - IMECE2018-88071
,
Pittsburgh, PA
,
Nov. 9–15
, Vol.
12
, p.
V012T11A030.
26.
Zheng
,
Z.
,
Chen
,
B.
,
Fritz
,
N.
,
Gurumukhi
,
Y.
,
Cook
,
J.
,
Ates
,
M. N.
,
Miljkovic
,
N.
,
Braun
,
P. V.
, and
Wang
,
P.
,
2020
, “
The Impact of Non-Uniform Metal Scaffolds on the Performance of 3d Structured Silicon Anodes
,”
J. Energy Storage
,
30
, p.
101502
.
27.
Fu
,
R.
,
Choe
,
S.-Y.
,
Agubra
,
V.
, and
Fergus
,
J.
,
2015
, “
Development of a Physics-Based Degradation Model for Lithium Ion Polymer Batteries Considering Side Reactions
,”
J. Power. Sources.
,
278
, pp.
506
521
.
28.
Cui
,
T.
,
Zheng
,
Z.
, and
Wang
,
P.
,
2021
, “
Surrogate Model Assisted Lithium-Ion Battery Co-Design for Fast Charging and Cycle Life Performances
,”
Proceedings of the ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 11B 46th Design Automation Conference (DAC)
,
Virtual, Online
,
Aug. 17–19
, p.
V11BT11A020
.
29.
Wang
,
Z.
, and
Wang
,
P.
,
2014
, “
A Maximum Confidence Enhancement Based Sequential Sampling Scheme for Simulation-Based Design
,”
ASME, J. Mech. Des.
,
136
(
2
), p.
021006
.
30.
Maxim
,
T.
, and
Jae-Woo
,
L.
,
2019
, “
Efficient Multi-Response Adaptive Sampling Algorithm for Construction of Variable-Fidelity Aerodynamic Tables
,”
Chin. J. Aeronaut.
,
32
(
3
), pp.
547
558
.
31.
Perez
,
H. E.
,
Hu
,
X.
,
Dey
,
S.
, and
Moura
,
S. J.
,
2017
, “
Optimal Charging of Li-Ion Batteries With Coupled Electro-Thermal-Aging Dynamics
,”
IEEE Trans.Vehicular Technol.
,
66
(
9
), pp.
7761
7770
.
32.
Doyle
,
M.
,
Fuller
,
T. F.
, and
Newman
,
J.
,
1993
, “
Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell
,”
J. Electrochem. Soc.
,
140
(
6
), pp.
1526
1533
.
33.
Cai
,
L.
, and
White
,
R. E.
,
2009
, “
Mathematical Modeling of a Lithium Ion Battery
,”
Proceedings of the COMSOL Conference
,
Boston, MA
,
Oct. 8–10
.
34.
Torchio
,
M.
,
Magni
,
L.
,
Braatz
,
R. D.
, and
Raimondo
,
D. M.
,
2016
, “
Optimal Health-Aware Charging Protocol for Lithium-Ion Batteries: A Fast Model Predictive Control Approach
,”
IFAC-PapersOnLine
,
49
(
7
), pp.
827
832
.
35.
Torchio
,
M.
,
Magni
,
L.
,
Gopaluni
,
R. B.
,
Braatz
,
R. D.
, and
Raimondo
,
D. M.
,
2016
, “
Lionsimba: A Matlab Framework Based on a Finite Volume Model Suitable for Li-Ion Battery Design, Simulation, and Control
,”
J. Electrochem. Soc.
,
163
(
7
), pp.
A1192
A1205
.
36.
Lucia
,
S.
,
Torchio
,
M.
,
Raimondo
,
D. M.
,
Klein
,
R.
,
Braatz
,
R. D.
, and
Findeisen
,
R.
,
2017
, “
Towards Adaptive Health-Aware Charging of Li-Ion Batteries: A Real-Time Predictive Control Approach Using First-Principles Models
,”
2017 American Control Conference (ACC)
,
Seattle, WA
,
May 24–26
,
IEEE
, pp.
4717
4722
.
37.
Ning
,
G.
,
White
,
R. E.
, and
Popov
,
B. N.
,
2006
, “
A Generalized Cycle Life Model of Rechargeable Li-Ion Batteries
,”
Electrochim. Acta.
,
51
(
10
), pp.
2012
2022
.
38.
Wang
,
P.
,
Wang
,
Z.
, and
Almaktoom
,
A. T.
,
2014
, “
Dynamic Reliability-Based Robust Design Optimization With Time-Variant Probabilistic Constraints
,”
Eng. Optim.
,
46
(
6
), pp.
784
809
.
39.
Allison
,
J. T.
, and
Herber
,
D. R.
,
2014
, “
Multidisciplinary Design Optimization of Dynamic Engineering Systems
,”
AIAA. J.
,
52
(
4
), pp.
691
710
.
40.
Herber
,
D. R.
, and
Allison
,
J. T.
,
2019
, “
Nested and Simultaneous Solution Strategies for General Combined Plant and Control Design Problems
,”
ASME, J. Mech. Des.
,
141
(
1
), p.
011402
.
41.
Patterson
,
M. A.
, and
Rao
,
A. V.
,
2014
, “
GPOPS-II: A Matlab Software for Solving Multiple-Phase Optimal Control Problems Using Hp-Adaptive Gaussian Quadrature Collocation Methods and Sparse Nonlinear Programming
,”
ACM Trans. Math. Softw.
,
41
(
1
), pp.
1
37
.
You do not currently have access to this content.