Abstract

As the energy density of lithium-ion batteries continues to increase, battery safety issues characterized by thermal runaway have become increasingly severe. Battery safety issues have severely restricted the large-scale application of power batteries. Among them, the flammable liquid organic electrolyte is one of the main reasons for the safety hazards of battery thermal runaway. This article reviews the flame-retardant mechanism and research progress of phosphorus-based flame-retardant additives, nitrogen-based flame-retardant additives, and halogen-based flame-retardant additives. The design strategies of conventional flame-retardant additives and intelligent flame-retardant additives in lithium-ion batteries are summarized. Finally, a development direction and research prospects of flame-retardant additives in lithium-ion battery electrolytes are prospected.

References

1.
Armand
,
M.
, and
Tarascon
,
J. M.
,
2008
, “
Building Better Batteries
,”
Nature
,
451
(
7179
), pp.
652
657
.
2.
Dunn
,
B.
,
Kamath
,
H.
, and
Tarascon
,
J. M.
,
2011
, “
Electrical Energy Storage for the Grid: A Battery of Choices
,”
Science
,
334
(
6058
), pp.
928
935
.
3.
Yun
,
S.
,
Zhang
,
Y.
,
Xu
,
Q.
,
Liu
,
J.
, and
Qin
,
Y.
,
2019
, “
Recent Advance in New-Generation Integrated Devices for Energy Harvesting and Storage
,”
Nano Energy
,
60
, pp.
600
619
.
4.
Tarascon
,
J.
, and
Armand
,
M.
,
2001
, “
Issues and Challenges Facing Rechargeable Lithium Batteries
,”
Nature
,
414
(
15
), pp.
359
367
.
5.
Cheng
,
X. B.
,
Zhang
,
R.
,
Zhao
,
C. Z.
, and
Zhang
,
Q.
,
2017
, “
Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review
,”
Chem. Rev.
,
117
(
15
), pp.
10403
10473
.
6.
Gao
,
Z.
,
Rao
,
S.
,
Zhang
,
T.
,
Gao
,
F.
,
Xiao
,
Y.
,
Shali
,
L.
,
Wang
,
X.
,
Zheng
,
Y.
,
Chen
,
Y.
,
Zong
,
Y.
,
Li
,
W.
, and
Chen
,
Y.
,
2021
, “
Bioinspired Thermal Runaway Retardant Capsules for Improved Safety and Electrochemical Performance in Lithium-Ion Batteries
,”
Adv. Sci.
,
9
(
5
), p.
2103796
.
7.
Zeng
,
X.
,
Li
,
M.
,
Abd El-Hady
,
D.
,
Alshitari
,
W.
,
Al-Bogami
,
A. S.
,
Lu
,
J.
, and
Amine
,
K.
,
2019
, “
Commercialization of Lithium Battery Technologies for Electric Vehicles
,”
Adv. Energy Mater.
,
9
(
27
), p.
1900161
.
8.
Kim
,
J.
,
Mallarapu
,
A.
,
Finegan
,
D. P.
, and
Santhanagopalan
,
S.
,
2021
, “
Modeling Cell Venting and Gas-Phase Reactions in 18650 Lithium Ion Batteries During Thermal Runaway
,”
J. Power Sources
,
489
, p.
229496
.
9.
Lai
,
X.
,
Jin
,
C.
,
Yi
,
W.
,
Han
,
X.
,
Feng
,
X.
,
Zheng
,
Y.
, and
Ouyang
,
M.
,
2021
, “
Mechanism, Modeling, Detection, and Prevention of the Internal Short Circuit in Lithium-Ion Batteries: Recent Advances and Perspectives
,”
Energy Storage Mater.
,
35
, pp.
470
499
.
10.
Wang
,
H.
,
Shi
,
W.
,
Hu
,
F.
,
Wang
,
Y.
,
Hu
,
X.
, and
Li
,
H.
,
2021
, “
Over-Heating Triggered Thermal Runaway Behavior for Lithium-Ion Battery With High Nickel Content in Positive Electrode
,”
Energy
,
224
, p.
120072
.
11.
Ren
,
D.
,
Feng
,
X.
,
Liu
,
L.
,
Hsu
,
H.
,
Lu
,
L.
,
Wang
,
L.
,
He
,
X.
, and
Ouyang
,
M.
,
2021
, “
Investigating the Relationship Between Internal Short Circuit and Thermal Runaway of Lithium-Ion Batteries Under Thermal Abuse Condition
,”
Energy Storage Mater.
,
34
, pp.
563
573
.
12.
Roth
,
E. P.
, and
Orendorff
,
C. J.
,
2021
, “
How Electrolytes Influence Battery Safety
,”
Electrochem. Soc. Interface
,
21
(
2
), pp.
45
49
.
13.
Wang
,
J.
,
Yamada
,
Y.
,
Sodeyama
,
K.
,
Watanabe
,
E.
,
Takada
,
K.
,
Tateyama
,
Y.
, and
Yamada
,
A.
,
2017
, “
Fire-Extinguishing Organic Electrolytes for Safe Batteries
,”
Nat. Energy
,
3
(
1
), pp.
22
29
.
14.
Chen
,
W.
,
Lei
,
T.
,
Wu
,
C.
,
Deng
,
M.
,
Gong
,
C.
,
Hu
,
K.
,
Ma
,
Y.
,
Dai
,
L.
,
Lv
,
W.
,
He
,
W.
,
Liu
,
X.
,
Xiong
,
J.
, and
Yan
,
C.
,
2018
, “
Designing Safe Electrolyte Systems for a High-Stability Lithium-Sulfur Battery
,”
Adv. Energy Mater.
,
8
(
10
), p.
1702348
.
15.
Zhang
,
L.
,
Huang
,
Y.
,
Fan
,
H.
, and
Wang
,
H.
,
2019
, “
Flame-Retardant Electrolyte Solution for Dual-Ion Batteries
,”
ACS Appl. Energy Mater.
,
2
(
2
), pp.
1363
1370
.
16.
Wang
,
W.
,
Liao
,
C.
,
Liu
,
L.
,
Cai
,
W.
,
Yuan
,
Y.
,
Hou
,
Y.
,
Guo
,
W.
,
Zhou
,
X.
,
Qiu
,
S.
,
Song
,
L.
,
Kan
,
Y.
, and
Hu
,
Y.
,
2019
, “
Comparable Investigation of Tervalent and Pentavalent Phosphorus Based Flame Retardants on Improving the Safety and Capacity of Lithium-Ion Batteries
,”
J. Power Sources
,
420
, pp.
143
151
.
17.
Noelle
,
D. J.
,
Shi
,
Y.
,
Wang
,
M.
,
Le
,
A. V.
, and
Qiao
,
Y.
,
2018
, “
Aggressive Electrolyte Poisons and Multifunctional Fluids Comprised of Diols and Diamines for Emergency Shutdown of Lithium-Ion Batteries
,”
J. Power Sources
,
384
, pp.
93
97
.
18.
Wang
,
Q.
,
Jiang
,
L.
,
Yu
,
Y.
, and
Sun
,
J.
,
2019
, “
Progress of Enhancing the Safety of Lithium ion Battery From the Electrolyte Aspect
,”
Nano Energy
,
55
, pp.
93
114
.
19.
Chen
,
J.
,
Naveed
,
A.
,
Nuli
,
Y.
,
Yang
,
J.
, and
Wang
,
J.
,
2020
, “
Designing an Intrinsically Safe Organic Electrolyte for Rechargeable Batteries
,”
Energy Storage Mater.
,
31
, pp.
382
400
.
20.
Zhang
,
L.
, and
Wang
,
H.
,
2020
, “
Anion Intercalation Into a Graphite Electrode From Trimethyl Phosphate
,”
ACS Appl. Mater Interfaces
,
12
(
42
), pp.
47647
47654
.
21.
Deng
,
K.
,
Zeng
,
Q.
,
Wang
,
D.
,
Liu
,
Z.
,
Wang
,
G.
,
Qiu
,
Z.
,
Zhang
,
Y.
,
Xiao
,
M.
, and
Meng
,
Y.
,
2020
, “
Nonflammable Organic Electrolytes for High-Safety Lithium-Ion Batteries
,”
Energy Storage Mater.
,
32
, pp.
425
447
.
22.
Hastie
,
J. W.
,
1973
, “
Molecular Basis of Flame Inhibiton
,”
J. Res. Natl. Bur. Stand., Sect. A
,
77A
(
6
), pp.
733
754
.
23.
Wang
,
X.
,
Yasukawa
,
E.
, and
Kasuya
,
S.
,
2001
, “
Nonflammable TrimethylPhosphate Solvent-Containing Electrolytes for Lithium-Ion Batteries: I. Fundamental Properties
,”
J. Electrochem. Soc.
,
148
(
10
), p.
A1058
.
24.
Shi
,
Y.
,
Gui
,
Z.
,
Yuan
,
B.
,
Hu
,
Y.
, and
Zheng
,
Y.
,
2017
, “
Flammability of Polystyrene/Aluminim Phosphinate Composites Containing Modified Ammonium Polyphosphate
,”
J. Therm. Anal. Calorim.
,
131
(
2
), pp.
1067
1077
.
25.
Dagger
,
T.
,
Niehoff
,
P.
,
Lürenbaum
,
C.
,
Schappacher
,
F. M.
, and
Winter
,
M.
,
2018
, “
Comparative Performance Evaluation of Flame Retardant Additives for Lithium Ion Batteries—II. Full Cell Cycling and Postmortem Analyses
,”
Energy Technol.
,
6
(
10
), pp.
2023
2035
.
26.
Bui
,
A. D.
,
Choi
,
S.-H.
,
Choi
,
H.
,
Lee
,
Y.-J.
,
Doh
,
C.-H.
,
Park
,
J.-W.
,
Kim
,
B. G.
,
Lee
,
W.-J.
,
Lee
,
S.-M.
, and
Ha
,
Y.-C.
,
2021
, “
Origin of the Outstanding Performance of Dual Halide Doped Li7P2S8X (X = I, Br) Solid Electrolytes for All-Solid-State Lithium Batteries
,”
ACS Appl. Energy Mater.
,
4
(
1
), pp.
1
8
.
27.
Li
,
X.
,
Feng
,
Y.
,
Chen
,
C.
,
Ye
,
Y.
,
Zeng
,
H.
,
Qu
,
H.
,
Liu
,
J.
,
Zhou
,
X.
,
Long
,
S.
, and
Xie
,
X.
,
2018
, “
Highly Thermally Conductive Flame Retardant Epoxy Nanocomposites With Multifunctional Ionic Liquid Flame Retardant-Functionalized Boron Nitride Nanosheets
,”
J. Mater. Chem. A
,
6
(
41
), pp.
20500
20512
.
28.
Yim
,
T.
,
Park
,
M. S.
,
Woo
,
S. G.
,
Kwon
,
H. K.
,
Yoo
,
J. K.
,
Jung
,
Y. S.
,
Kim
,
K. J.
,
Yu
,
J. S.
, and
Kim
,
Y. J.
,
2015
, “
Self-Extinguishing Lithium Ion Batteries Based on Internally Embedded Fire-Extinguishing Microcapsules With Temperature-Responsiveness
,”
Nano Lett.
,
15
(
8
), pp.
5059
5067
.
29.
Zheng
,
J.
,
Yang
,
Y.
,
Li
,
W.
,
Feng
,
X.
,
Chen
,
W.
, and
Zhao
,
Y.
,
2020
, “
Novel Flame Retardant Rigid Spirocyclic Biphosphate Based Copolymer gel Electrolytes for Sodium Ion Batteries With Excellent High-Temperature Performance
,”
J. Mater. Chem. A
,
8
(
43
), pp.
22962
22968
.
30.
Yan
,
P.
,
Zhu
,
Y.
,
Pan
,
X.
, and
Ji
,
H.
,
2020
, “
A Novel Flame-Retardant Electrolyte Additive for Safer Lithium-Ion Batteries
,”
Int. J. Energy Res.
,
45
(
2
), pp.
2776
2784
.
31.
Aspern
,
N.
,
Leissing
,
M.
,
Wölke
,
C.
,
Diddens
,
D.
,
Kobayashi
,
T.
,
Börner
,
M.
,
Stubbmann-Kazakova
,
O.
,
Kozel
,
V.
,
Röschenthaler
,
G.
,
Smiatek
,
J.
,
Nowak
,
S.
,
Winter
,
M.
, and
Cekic-Laskovic
,
I.
,
2020
, “
Non-Flammable Fluorinated Phosphorus (III)-Based Electrolytes for Advanced Lithium-Ion Battery Performance
,”
ChemElectroChem
,
7
(
6
), pp.
1499
1508
.
32.
Tian
,
X.
,
Yi
,
Y.
,
Fang
,
B.
,
Yang
,
P.
,
Wang
,
T.
,
Liu
,
P.
,
Qu
,
L.
,
Li
,
M.
, and
Zhang
,
S.
,
2020
, “
Design Strategies of Safe Electrolytes for Preventing Thermal Runaway in Lithium Ion Batteries
,”
Chem. Mater.
,
32
(
23
), pp.
9821
9848
.
33.
Yang
,
G.
,
Wu
,
W. H.
,
Wang
,
Y. H.
,
Jiao
,
Y. H.
,
Lu
,
L. Y.
,
Qu
,
H. Q.
, and
Qin
,
X. Y.
,
2019
, “
Synthesis of a Novel Phosphazene-Based Flame Retardant With Active Amine Groups and Its Application in Reducing the Fire Hazard of Epoxy Resin
,”
J. Hazard. Mater.
,
366
, pp.
78
87
.
34.
Ge
,
J.
,
Liang
,
H.
,
Zhou
,
M.
,
Zhao
,
C.
,
Zheng
,
Z.
,
Yan
,
Y.
,
Zhao
,
L.
, and
Tang
,
K.
,
2019
, “
Phosphonate-Functionalized Ionic Liquid: A Novel Electrolyte Additive for Enhanced Cyclic Stability and Rate Capability of LiCoO2 Cathode at High Voltage
,”
ChemistrySelect
,
4
(
34
), pp.
9959
9965
.
35.
Son
,
D. I.
,
Kim
,
T. W.
,
Shim
,
J. H.
,
Jung
,
J. H.
,
Lee
,
D. U.
,
Lee
,
J. M.
,
Park
,
W. I.
, and
Choi
,
W. K.
,
2010
, “
Flexible Organic Bistable Devices Based on Graphene Embedded in an Insulating Poly(Methyl Methacrylate) Polymer Layer
,”
Nano Lett.
,
10
(
7
), pp.
2441
2447
.
36.
Shim
,
E.-G.
,
Nam
,
T.-H.
,
Kim
,
J.-G.
,
Kim
,
H.-S.
, and
Moon
,
S.-I.
,
2007
, “
Electrochemical Performance of Lithium-Ion Batteries With Triphenylphosphate as a Flame-Retardant Additive
,”
J. Power Sources
,
172
(
2
), pp.
919
924
.
37.
Hyung
,
Y. E.
,
Vissers
,
D. R.
, and
Amine
,
K.
,
2003
, “
Flame-Retardant Additives for Lithium-Ion Batteries
,”
J. Power Sources
,
119–121
, pp.
383
387
.
38.
Wang
,
Q.
,
Sun
,
J.
,
Yao
,
X.
, and
Chen
,
C.
,
2005
, “
4-Isopropyl Phenyl Diphenyl Phosphate as Flame-Retardant Additive for Lithium-Ion Battery Electrolyte
,”
Electrochem. Solid-State Lett.
,
8
(
9
), p.
A467
.
39.
Ota
,
H.
,
Kominato
,
A.
,
Chun
,
W.-J.
,
Yasukawa
,
E.
, and
Kasuya
,
S.
,
2003
, “
Effect of Cyclic Phosphate Additive in Non-Flammable Electrolyte
,”
J. Power Sources
,
119–121
, pp.
393
398
.
40.
Yao
,
X. L.
,
Xie
,
S.
,
Chen
,
C. H.
,
Wang
,
Q. S.
,
Sun
,
J. H.
,
Li
,
Y. L.
, and
Lu
,
S. X.
,
2005
, “
Comparative Study of Trimethyl Phosphite and Trimethyl Phosphate as Electrolyte Additives in Lithium Ion Batteries
,”
J. Power Sources
,
144
(
1
), pp.
170
175
.
41.
Zhang
,
S. S.
,
Xu
,
K.
, and
Jow
,
T. R.
,
2002
, “
A Thermal Stabilizer for LiPF6-Based Electrolytes of Li-Ion Cells
,”
Electrochem. Solid-State Lett.
,
5
(
9
), p.
A206
.
42.
Zhu
,
Y.
,
Luo
,
X.
,
Zhi
,
H.
,
Liao
,
Y.
,
Xing
,
L.
,
Xu
,
M.
,
Liu
,
X.
,
Xu
,
K.
, and
Li
,
W.
,
2018
, “
Diethyl(Thiophen-2-Ylmethyl)Phosphonate: A Novel Multifunctional Electrolyte Additive for High Voltage Batteries
,”
J. Mater. Chem. A
,
6
(
23
), pp.
10990
11004
.
43.
Xia
,
X.
,
Ping
,
P.
, and
Dahn
,
J. R.
,
2012
, “
The Reactivity of Charged Electrode Materials With Electrolytes Containing the Flame Retardant, Triphenyl Phosphate
,”
J. Electrochem. Soc.
,
159
(
11
), pp.
A1834
A1837
.
44.
Lai
,
Y.
,
Ren
,
C.
,
Lu
,
H.
,
Zhang
,
Z.
, and
Li
,
J.
,
2012
, “
Compatibility of Diphenyloctyl Phosphate as Flame-Retardant Additive With LiNi1/3Co1/3 Mn1/3O2/Artificial Graphite Cells
,”
J. Electrochem. Soc.
,
159
(
8
), pp.
A1267
A1272
.
45.
Shim
,
E.-G.
,
Nam
,
T.-H.
,
Kim
,
J.-G.
,
Kim
,
H.-S.
, and
Moon
,
S.-I.
,
2009
, “
Effect of the Concentration of Diphenyloctyl Phosphate as a Flame-Retarding Additive on the Electrochemical Performance of Lithium-Ion Batteries
,”
Electrochim. Acta
,
54
(
8
), pp.
2276
2283
.
46.
Wang
,
Q.
,
Ping
,
P.
,
Sun
,
J.
, and
Chen
,
C.
,
2011
, “
Cresyl Diphenyl Phosphate Effect on the Thermal Stabilities and Electrochemical Performances of Electrodes in Lithium Ion Battery
,”
J. Power Sources
,
196
(
14
), pp.
5960
5965
.
47.
Ping
,
P.
,
Wang
,
Q. S.
,
Sun
,
J. H.
,
Xia
,
X.
, and
Dahn
,
J. R.
,
2012
, “
Studies of the Effect of Triphenyl Phosphate on Positive Electrode Symmetric Li-Ion Cells
,”
J. Electrochem. Soc.
,
159
(
9
), pp.
A1467
A1473
.
48.
Dunn
,
R. P.
,
Kafle
,
J.
,
Krause
,
F. C.
,
Hwang
,
C.
,
Ratnakumar
,
B. V.
,
Smart
,
M. C.
, and
Lucht
,
B. L.
,
2012
, “
Electrochemical Analysis of Li-Ion Cells Containing Triphenyl Phosphate
,”
J. Electrochem. Soc.
,
159
(
12
), pp.
A2100
A2108
.
49.
Xu
,
M.
,
Hao
,
L.
,
Liu
,
Y.
,
Li
,
W.
,
Xing
,
L.
, and
Li
,
B.
,
2011
, “
Experimental and Theoretical Investigations of Dimethylacetamide (DMAc) as Electrolyte Stabilizing Additive for Lithium Ion Batteries
,”
J. Phys. Chem. C
,
115
(
13
), pp.
6085
6094
.
50.
Cho
,
Y.-H.
,
Kim
,
K.
,
Ahn
,
S.
, and
Liu
,
H. K.
,
2011
, “
Allyl-Substituted Triazines as Additives for Enhancing the Thermal Stability of Li-Ion Batteries
,”
J. Power Sources
,
196
(
3
), pp.
1483
1487
.
51.
Isken
,
P.
,
Dippel
,
C.
,
Schmitz
,
R.
,
Schmitz
,
R. W.
,
Kunze
,
M.
,
Passerini
,
S.
,
Winter
,
M.
, and
Lex-Balducci
,
A.
,
2011
, “
High Flash Point Electrolyte for Use in Lithium-Ion Batteries
,”
Electrochim. Acta
,
56
(
22
), pp.
7530
7535
.
52.
Fonseca
,
V. M.
,
Fernandes
,
V. J.
,
Araujo
,
A. S.
,
Carvalho
,
L. H.
, and
Souza
,
A. G.
,
2005
, “
Effect of Halogenated Flame-Retardant Additives in the Pyrolysis and Thermal Degradation of Polyester/Sisal Composites
,”
J. Therm. Anal. Calorim.
,
79
(
2
), pp.
429
433
.
53.
Chandrasekaran
,
R.
,
Koh
,
M.
,
Ozhawa
,
Y.
,
Aoyoma
,
H.
, and
Nakajima
,
T.
,
2009
, “
Electrochemical Cell Studies on Fluorinated Natural Graphite in Propylene Carbonate Electrolyte With Difluoromethyl Acetate (MFA) Additive for Low Temperature Lithium Battery Application
,”
J. Chem. Sci.
,
121
(
3
), pp.
339
346
.
54.
Nagasubramanian
,
G.
, and
Fenton
,
K.
,
2013
, “
Reducing Li-Ion Safety Hazards Through Use of Non-Flammable Solvents and Recent Work at Sandia National Laboratories
,”
Electrochim. Acta
,
101
, pp.
3
10
.
55.
Benmayza
,
A.
,
Lu
,
W.
,
Ramani
,
V.
, and
Prakash
,
J.
,
2014
, “
Electrochemical and Thermal Studies of LiNi0.8Co0.15Al0.015O2 Under Fluorinated Electrolytes
,”
Electrochim. Acta
,
123
, pp.
7
13
.
56.
Arai
,
J.
,
Katayama
,
H.
, and
Akahoshi
,
H.
,
2002
, “
Binary Mixed Solvent Electrolytes Containing Trifluoropropylene Carbonate for Lithium Secondary Batteries
,”
J. Electrochem. Soc.
,
149
(
2
), pp.
A217
A226
.
57.
Yamaki
,
J. I.
,
Yamazaki
,
I.
,
Egashira
,
M.
, and
Okada
,
S.
,
2001
, “
Thermal Studies of Fluorinated Ester as a Novel Candidate for Electrolyte Solvent of Lithium Metal Anode Rechargeable Cells
,”
J. Power Sources
,
102
(
1–2
), pp.
288
293
.
58.
Sato
,
K.
,
Yamazaki
,
I.
,
Okada
,
S.
, and
Yamaki
,
J. I.
,
2002
, “
Mixed Solvent Electrolytes Containing Fluorinated Carboxylic Acid Esters to Improve the Thermal Stability of Lithium Metal Anode Cells
,”
Solid State Ionics
,
148
(
3–4
), pp.
463
466
.
59.
Ihara
,
M.
,
Hang
,
B. T.
,
Sato
,
K.
,
Egashira
,
M.
,
Okada
,
S.
, and
Yamaki
,
J.
,
2003
, “
Properties of Carbon Anodes and Thermal Stability in LiPF6/Methyl Difluoroacetate Electrolyte
,”
J. Electrochem. Soc.
,
150
(
11
), pp.
A1476
A1483
.
60.
Xu
,
K.
,
Michael
,
S. D.
,
Zhang
,
S.
,
Allen
,
J. L.
, and
Jow
,
T. R.
,
2002
, “
An Attempt to Formulate Nonflammable Lithium Ion Electrolytes With Alkyl Phosphates and Phosphazenes
,”
J. Electrochem. Soc.
,
149
(
5
), pp.
A622
A626
.
61.
Hu
,
J.
,
Jin
,
Z.
,
Zhong
,
H.
,
Zhan
,
H.
,
Zhou
,
Y.
, and
Li
,
Z.
,
2012
, “
A New Phosphonamidate as Flame Retardant Additive in Electrolytes for Lithium Ion Batteries
,”
J. Power Sources
,
197
, pp.
297
300
.
62.
Zhu
,
X.
,
Jiang
,
X.
,
Ai
,
X.
,
Yang
,
H.
, and
Cao
,
Y.
,
2015
, “
Bis(2,2,2-Trifluoroethyl) Ethylphosphonate as Novel High-Efficient Flame Retardant Additive for Safer Lithium-Ion Battery
,”
Electrochim. Acta
,
165
, pp.
67
71
.
63.
Chen
,
S.
,
Wang
,
Z.
,
Zhao
,
H.
,
Qiao
,
H.
,
Luan
,
H.
, and
Chen
,
L.
,
2009
, “
A Novel Flame Retardant and Film-Forming Electrolyte Additive for Lithium Ion Batteries
,”
J. Power Sources
,
187
(
1
), pp.
229
232
.
64.
Shi
,
Y.
,
Noelle
,
D. J.
,
Wang
,
M.
,
Le
,
A. V.
,
Yoon
,
H.
,
Zhang
,
M.
,
Meng
,
Y. S.
,
Fan
,
J.
,
Wu
,
D.
, and
Qiao
,
Y.
,
2017
, “
Mitigating Thermal Runaway of Lithium-Ion Battery Through Electrolyte Displacement
,”
Appl. Phys. Lett.
,
110
(
6
), p.
063902
.
65.
Tsujikawa
,
T.
,
Yabuta
,
K.
,
Matsushita
,
T.
,
Matsushima
,
T.
,
Hayashi
,
K.
, and
Arakawa
,
M.
,
2009
, “
Characteristics of Lithium-Ion Battery With Non-Flammable Electrolyte
,”
J. Power Sources
,
189
(
1
), pp.
429
434
.
66.
Zhang
,
Q.
,
Noguchi
,
H.
,
Wang
,
H.
,
Yoshio
,
M.
,
Otsuki
,
M.
, and
Ogino
,
T.
,
2005
, “
Improved Thermal Stability of LiCoO2 by Cyclotriphosphazene Additives in Lithium-Ion Batteries
,”
Chem. Lett.
,
34
(
7
), pp.
1012
1013
.
67.
Xia
,
L.
,
Xia
,
Y.
, and
Liu
,
Z.
,
2015
, “
A Novel Fluorocyclophosphazene as Bifunctional Additive for Safer Lithium-Ion Batteries
,”
J. Power Sources
,
278
, pp.
190
196
.
68.
Xu
,
G.
,
Pang
,
C.
,
Chen
,
B.
,
Ma
,
J.
,
Wang
,
X.
,
Chai
,
J.
,
Wang
,
Q.
,
An
,
W.
,
Zhou
,
X.
,
Cui
,
G.
, and
Chen
,
L.
,
2018
, “
Prescribing Functional Additives for Treating the Poor Performances of High-Voltage (5 v-Class) LiNi0.5Mn1.5O4/MCMB Li-Ion Batteries
,”
Adv. Energy Mater.
,
8
(
9
), p.
1701398
.
69.
Murmann
,
P.
,
Mönnighoff
,
X.
,
von Aspern
,
N.
,
Janssen
,
P.
,
Kalinovich
,
N.
,
Shevchuk
,
M.
,
Kazakova
,
O.
,
Röschenthaler
,
G.-V.
,
Cekic-Laskovic
,
I.
, and
Winter
,
M.
,
2016
, “
Influence of the Fluorination Degree of Organophosphates on Flammability and Electrochemical Performance in Lithium Ion Batteries: Studies on Fluorinated Compounds Deriving From Triethyl Phosphate
,”
J. Electrochem. Soc.
,
163
(
5
), pp.
A751
A757
.
70.
Murmann
,
P.
,
von Aspern
,
N.
,
Janssen
,
P.
,
Kalinovich
,
N.
,
Shevchuk
,
M.
,
Röschenthaler
,
G.-V.
,
Winter
,
M.
, and
Cekic-Laskovic
,
I.
,
2018
, “
Influence of the Fluorination Degree of Organophosphates on Flammability and Electrochemical Performance in Lithium Ion Batteries
,”
J. Electrochem. Soc.
,
165
(
9
), pp.
A1935
A1942
.
71.
Xu
,
K.
,
Ding
,
M. S.
,
Zhang
,
S.
,
Allen
,
J. L.
, and
Jow
,
T. R.
,
2003
, “
Evaluation of Fluorinated Alkyl Phosphates as Flame Retardants in Electrolytes for Li-Ion Batteries: I. Physical and Electrochemical Properties
,”
J. Electrochem. Soc.
,
150
(
2
), p.
A161
.
72.
Zhang
,
S. S.
,
Xu
,
K.
, and
Jow
,
T. R.
,
2003
, “
Tris(2,2,2-Trifluoroethyl) Phosphite as a Co-Solvent for Nonflammable Electrolytes in Li-Ion Batteries
,”
J. Power Sources
,
113
(
1
), pp.
166
172
.
73.
Hu
,
J.
,
Jin
,
Z.
,
Zhong
,
H.
,
Zhan
,
H.
,
Zhou
,
Y.
, and
Li
,
Z.
,
2012
, “
A New Phosphonamidite as Flame Retardant Additive in Electrolytes for Lithium Ion Batteries
,”
J. Power Sources
,
197
, pp.
293
300
.
74.
Fei
,
S.-T.
, and
Allcock
,
H. R.
,
2010
, “
Methoxyethoxyethoxyphosphazenes as Ionic Conductive Fire Retardant Additives for Lithium Battery Systems
,”
J. Power Sources
,
195
(
7
), pp.
2082
2088
.
75.
Wu
,
B.
,
Pei
,
F.
,
Wu
,
Y.
,
Mao
,
R.
,
Ai
,
X.
,
Yang
,
H.
, and
Cao
,
Y.
,
2013
, “
An Electrochemically Compatible and Flame-Retardant Electrolyte Additive for Safe Lithium Ion Batteries
,”
J. Power Sources
,
227
, pp.
106
110
.
76.
Ye
,
Y.
,
Chou
,
L.-Y.
,
Liu
,
Y.
,
Wang
,
H.
,
Lee
,
H. K.
,
Huang
,
W.
,
Wan
,
J.
,
Liu
,
K.
,
Zhou
,
G.
,
Yang
,
Y.
,
Yang
,
A.
,
Xiao
,
X.
,
Gao
,
X.
,
Boyle
,
D. T.
,
Chen
,
H.
,
Zhan
,
W.
,
Kim
,
S. C.
, and
Cui
,
Yi.
,
2020
, “
Ultralight and Fire-Extinguishing Current Collectors for High-Energy and High-Safety Lithium-Ion Batteries
,”
Nat. Energy
,
5
(
10
), pp.
786
793
.
77.
Swiderska-Mocek
,
A.
,
Jakobczyk
,
P.
,
Rudnicka
,
E.
, and
Lewandowski
,
A.
,
2020
, “
Flammability Parameters of Lithium-Ion Battery Electrolytes
,”
J. Mol. Liq.
,
318
, p.
113986
.
78.
Lv
,
J.
,
Ye
,
J.
,
Dai
,
G.
,
Niu
,
Z.
,
Sun
,
Y.
,
Zhang
,
X.
, and
Zhao
,
Y.
,
2020
, “
Flame-Retarding Battery Cathode Materials Based on Reversible Multi-Electron Redox Chemistry of Phenothiazine-Based Polymer
,”
J. Energy Chem.
,
47
, pp.
256
262
.
79.
Nikiforidis
,
G.
,
Raghibi
,
M.
,
Sayegh
,
A.
, and
Anouti
,
M.
,
2021
, “
Low-Concentrated Lithium Hexafluorophosphate Ternary-Based Electrolyte for a Reliable and Safe NMC/Graphite Lithium-Ion Battery
,”
J. Phys. Chem. Lett.
,
12
(
7
), pp.
1911
1917
.
80.
Jin
,
Z.
,
Gao
,
H.
,
Kong
,
C.
,
Zhan
,
H.
, and
Li
,
Z.
,
2013
, “
A Novel Phosphate-Based Flame Retardant and Film-Forming Electrolyte Additive for Lithium Ion Batteries
,”
ECS Electrochem. Lett.
,
2
(
7
), pp.
A66
A68
.
81.
Hogstroem
,
K. C.
,
Lundgren
,
H.
,
Wilken
,
S.
,
Zavalis
,
T. G.
,
Behm
,
M.
,
Edstrom
,
K.
,
Jacobsson
,
P.
,
Johansson
,
P.
, and
Lindbergh
,
G.
,
2014
, “
Impact of the Flame Retardant Additive Triphenyl Phosphate (TPP) on the Performance of Graphite/LiFePO4 Cells in High Power Applications
,”
J. Power Sources
,
256
, pp.
430
439
.
82.
Huang
,
P.
,
Chang
,
S.
, and
Li
,
C.
,
2017
, “
Encapsulation of Flame Retardants for Application in Lithium-Ion Batteries
,”
J. Power Sources
,
338
, pp.
82
90
.
83.
Baginska
,
M.
,
Sottos
,
N.
, and
White
,
S.
,
2018
, “
Core–Shell Microcapsules Containing Flame Retardant Tris(2-Chloroethyl Phosphate) for Lithium-Ion Battery Applications
,”
ACS Omega
,
3
(
2
), pp.
1609
1613
.
84.
Liu
,
K.
,
Liu
,
W.
,
Qiu
,
Y.
,
Kong
,
B.
,
Sun
,
Y.
,
Chen
,
Z.
,
Zhuo
,
D.
,
Lin
,
D.
, and
Cui
,
Y.
,
2017
, “
Electrospun Core-Shell Microfiber Separator With Thermal-Triggered Flame-Retardant Properties for Lithium-Ion Batteries
,”
Sci. Adv.
,
3
(
1
), p.
1601978
.
You do not currently have access to this content.