Abstract

The state of charge (SoC) is an important index of the energy output performance of power battery pack. But the SoC value is affected by various factors, namely, ambient temperature, working current, equilibrium potential, and the consistency between batteries in the pack. These factors might dampen the accuracy of the traditional SoC evaluation methods like current–voltage method and Kalman filter. The evaluation accuracy is also influenced by the data drift and rest time to equilibrium potential. Considering the multiple influencing factors of SoC, this paper analyzes the data drift and rest time to equilibrium potential, and builds an approximate model of overpotential for 32650 LiFePO4 battery, based on the time variation constant and the monotonicity of SoC trend. The proposed model was adopted to optimize the evaluation of SoC. To verify its effectiveness, the proposed method was compared with current–voltage method and Kalman filter through experiments. The results show that our method outperformed the contrastive methods in simplicity, relative error (<2.33%), compatibility, and state of health (SoH).

References

1.
Bruen
,
T.
, and
Marco
,
J.
,
2016
, “
Modelling and Experimental Evaluation of Parallel Connected Lithium Ion Cells for an Electric Vehicle Battery System
,”
J. Power Sources
,
310
, pp.
91
101
. 10.1016/j.jpowsour.2016.01.001
2.
Fleischer
,
C.
,
Waag
,
W.
,
Heyn
,
H.-M.
, and
Sauer
,
D. U.
,
2014
, “
On-Line Adaptive Battery Impedance Parameter and State Estimation Considering Physical Principles in Reduced Order Equivalent Circuit Battery Models: Part I. Requirements, Critical Review of Methods and Modeling
,”
J. Power Sources
,
260
, pp.
276
291
. 10.1016/j.jpowsour.2014.01.129
3.
An
,
Z.
,
Jia
,
L.
,
Ding
,
Y.
,
Dang
,
C.
, and
Li
,
X.
,
2017
, “
A Review on Lithium Ion Power Battery Thermal Management Technologies and Thermal Safety
,”
J. Therm. Sci.
,
26
(
5
), pp.
391
412
. 10.1007/s11630-017-0955-2
4.
Hu
,
Y.
,
2019
, “
Summary of Methods for State of Charge Estimation of Power Batteries
,”
Automob. Appl. Technol.
,
8
, pp.
36
38
. 10.16638/j.cnki.1671-7988.2019.08.011
5.
Li
,
L.
, and
Zhang
,
D.
,
2017
, “
Voltage Forecasting Method for Still Standing Lithium Iron Phosphate Battery After Charging
,”
Sci. Technol. Eng.
,
5
(
17
), pp.
109
113
.
6.
Dharmakeerthi
,
C. H.
,
Mithulananthan
,
N.
, and
Saha
,
T. K.
,
2014
, “
Impact of Electric Vehicle Fast Charging on Power System Voltage Stability
,”
Int. J. Electr. Power Energy Syst.
,
57
(
5
), pp.
241
249
. 10.1016/j.ijepes.2013.12.005
7.
Tong
,
S.
,
Klein
,
M. P.
, and
Park
,
J. W.
,
2015
, “
On-Line Optimization of Battery Open Circuit Voltage for Improved State-of-Charge and State-of-Health Estimation
,”
J. Power Sources
,
293
, pp.
416
428
. 10.1016/j.jpowsour.2015.03.157
8.
Xia
,
B.
,
Wang
,
H.
,
Wang
,
M.
,
Sun
,
W.
,
Xu
,
Z.
, and
Lai
,
Y.
,
2015
, “
A New Method for State of Charge Estimation of Lithium Ion Battery Based on Strong Tracking Cubature Kalman Filter
,”
Energies
,
8
(
12
), pp.
13458
13472
. 10.3390/en81212378
9.
Wang
,
B.
,
2016
, “
Battery Management System Design of Mine Large Capacity Backup Power
,”
Chin. J. Power Sources
,
40
(
1
), pp.
73
74
.
10.
Feng
,
J.
,
2016
, “
Training Data Selection of BP Neural Network for State-of-Charge Estimation of Li-Ion Battery
,”
Chin. J. Power Sources
,
40
(
2
), pp.
283
286
.
11.
Zhou
,
M.
,
Wang
,
J.
, and
Li
,
Y.
,
2015
, “
Optimized BP Neural Network in the Prediction of Electric Vehicles SOC
,”
J. Nat. Sci. Heilongjiang Univ.
,
32
(
1
), pp.
129
134
. 10.13482/j.issn1001-7011.2015.01.006
12.
Zhang
,
C.
,
Li
,
L.
, and
Zhao
,
D.
,
2017
, “
Estimation and Simulation of Power Battery SOC Based on BP Neural Network
,”
Chin. J. Power Sources
,
41
(
9
), pp.
1356
1357 + 1368
.
13.
Tan
,
F.
, and
Wang
,
Q.
,
2019
, “
The SOC Estimation Model of Power Battery Based on Improved UKF Algorithm
,”
Automob. Technol
,
3
, pp.
18
24
. 10.19620/j.cnki.1000-3703.20180446
14.
Xue
,
K.-H.
, and
Plett
,
G. L.
,
2013
, “
A Convective Transport Theory for High Rate Discharge in Lithium Ion Cells
,”
Electrochim. Acta
,
87
, pp.
575
590
. 10.1016/j.electacta.2012.09.109
15.
Lee
,
J. L.
,
Aldrich
,
L. L.
,
Stetzel
,
K. D.
, and
Plett
,
G. L.
,
2014
, “
Extended Operating Range for Reduced-Order Model of Lithium-ion Cells
,”
J. Power Sources
,
255
, pp.
85
100
. 10.1016/j.jpowsour.2013.12.134
16.
Han
,
B.
,
Wang
,
D.
, and
Li
,
S.
,
2017
, “
Research on Battery Connection Reliability Based on DC Internal Resistance
,”
Chin. J. Power Sources
,
41
(
7
), pp.
981
983
.
17.
Wei
,
J.
,
Dong
,
G.
, and
Chen
,
Z.
,
2017
, “
On-Board Adaptive Model for State of Charge Estimation of Lithium-Ion Batteries Based on Kalman Filter With Proportional Integral-Based Error Adjustment
,”
J. Power Sources
,
365
, pp.
308
319
. 10.1016/j.jpowsour.2017.08.101
18.
Xu
,
Y.
,
Li
,
J.
,
Gao
,
Q.
,
Yu
,
L.
,
Xu
,
W.
, and
Li
,
F.
,
2019
, “
Paralleling Voltage Oscillation Forecast Method of Energy Device Based on Hysteresis Curve Equation
,”
J. Eng.
,
23
, pp.
9143
9147
. 10.1049/joe.2018.9203
19.
Xu
,
Y.
,
Yu
,
L.
,
Gao
,
Q.
,
Wang
,
X.
,
Xu
,
W.
,
Wu
,
Q.
,
Li
,
F.
, and
Zeng
,
X.
,
2018
, “
Lithium Iron Phosphate Battery Combination Method of Electric Vehicle Based on Capacity Maximization
,”
Basic Clin. Pharmacol. Toxicol.
,
122
(
S2
), p.
55
.
20.
Wu
,
J.
,
2019
, “
Research on SoC Estimate of Power Battery Based on Multivariable Analysis Method
,” South China University of Technology, pp.
20
30
. 10.27151/d.cnki.ghnlu.2019.004477
21.
Xu
,
Y.
,
Wu
,
J.
,
Xu
,
W.
,
Li
,
G.
, and
Gao
,
Q.
,
2021
, “
Performance Matrix Analysis Method of Power Battery System Based on Multi Parameters’ Model
,”
ASME J. Electrochem. Energy Convers. Storage
,
18
(
2
), p.
020902
. 10.1115/1.4048589
22.
Xu
,
Y.
,
Zong
,
Z.
,
Gao
,
Q.
, and
Luo
,
X.
,
2014
, “
A Consistency Evaluation and Maintenance Method of Electric Vehicle Lithium-ion Battery
,”
ACTA Scientiarum Naturalium Universitatis SunYatSeni
,
53
(
5
), pp.
25
28
. 10.13471/j.cnki.acta.snus.2014.05.030
You do not currently have access to this content.