Abstract

Liquid–gas two-phase flow in flow channels of proton exchange membrane (PEM) fuel cells has been investigated extensively in the literature; however, a comparison between the order of the magnitude of the forces occurring within the flow channels has not been documented. A comparison is relevant due to increased interest in practical active and passive water management strategies. The present study compares the magnitude of the forces experienced by liquid water residing in the flow channels. An analytical model of a 20-cm-long flow channel was analyzed, and key forces were compared in the stream-wise coordinate. Results clearly reinforce the dominance of the surface tension forces over other forces applied in the channel while also demonstrating how they change with key variables. For a cathode stoichiometric ratio of 1, the surface tension effects were calculated to be three orders of magnitude greater than the gravitational effects, the second largest force scale, for a droplet diameter of 0.1 mm. For larger droplets, this difference becomes smaller but the surface tension effects remain dominant. The results are useful for flow-field designers where water removal using complex geometry and hydrophobic coatings are being explored.

References

1.
Lin
,
G.
, and
Van Nguyen
,
T.
,
2005
, “
Effect of Thickness and Hydrophobic Polymer Content of the Gas Diffusion Layer on Electrode Flooding Level in a PEMFC
,”
J. Electrochem. Soc.
,
152
(
10
), p.
A1942
. 10.1149/1.2006487
2.
Weber
,
A.
, and
Newman
,
J.
,
2005
, “
Effects of Microporous Layers in Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
152
(
4
), p.
A677
. 10.1149/1.1861194
3.
Spernjak
,
D.
,
Prasad
,
A.
, and
Advani
,
S.
,
2007
, “
Experimental Investigation of Liquid Water Formation and Transport in a Transparent Single-Serpentine PEM Fuel Cell
,”
J. Power Sources
,
170
(
2
), pp.
334
344
. 10.1016/j.jpowsour.2007.04.020
4.
Pharoah
,
J. G.
,
Peppley
,
B.
,
Atiyeh
,
H.
,
Halliop
,
E.
,
Karan
,
K.
, and
Phoenix
,
A.
,
2006
, “
Investigating the Role of a Microporous Layer on the Water Transport and Performance of a PEMFC
,”
ECS Trans.
,
3
(
1
), p.
1227
. 10.1149/1.2356242
5.
Malevich
,
D.
,
Halliop
,
E.
,
Peppley
,
B. A.
,
Pharoah
,
J. G.
, and
Karan
,
K.
,
2009
, “
Investigation of Charge-Transfer and Mass-Transport Resistances in PEMFCs With Microporous Layer Using Electrochemical Impedance Spectroscopy
,”
J. Electrochem. Soc.
,
156
(
2
), pp.
B216
B224
. 10.1149/1.3033408
6.
Karan
,
K.
,
Atiyeh
,
H.
,
Phoenix
,
A.
,
Halliop
,
E.
,
Pharoah
,
J.
, and
Peppley
,
B.
,
2007
, “
An Experimental Investigation of Water Transport in PEMFCs the Role of Microporous Layers
,”
Electrochem. Solid-State Lett.
,
10
(
2
), pp.
B34
B38
. 10.1149/1.2398728
7.
Atiyeh
,
H. K.
,
Karan
,
K.
,
Peppley
,
B.
,
Phoenix
,
A.
,
Halliop
,
E.
, and
Pharoah
,
J.
,
2007
, “
Experimental Investigation of the Role of a Microporous Layer on the Water Transport and Performance of a PEM Fuel Cell
,”
J. Power Sources
,
170
(
1
), pp.
111
121
.
8.
Mortazavi
,
M.
, and
Tajiri
,
K.
,
2014
, “
Liquid Water Breakthrough Pressure Through Gas Diffusion Layer of Proton Exchange Membrane Fuel Cell
,”
Int. J. Hydrogen Energy
,
39
(
17
),, pp.
9409
9419
. 10.1016/j.ijhydene.2014.03.238
9.
Mortazavi
,
M.
,
Santamaria
,
A. D.
,
Chauhan
,
V.
,
Benner
,
J. Z.
,
Heidari
,
M.
, and
Médici
,
E. F.
,
2020
, “
Effect of PEM Fuel Cell Porous Media Compression on In-plane Transport Phenomena
,”
J. Power Sources Adv.
,
1
, p.
100001
. 10.1016/j.powera.2020.100001
10.
Kandlikar
,
S. G.
, and
Lu
,
Z.
,
2009
, “
Thermal Management Issues in a PEMFC Stack—A Brief Review of Current Status
,”
Appl. Therm. Eng.
,
29
(
7
), pp.
1276
1280
. 10.1016/j.applthermaleng.2008.05.009
11.
Santamaria
,
A.
, and
Mortazavi
,
M.
,
2020
, “
Aqueous Ammonia Wetting of Gas-Diffusion Media for Electrochemical Cells
,”
J. Electrochem. Soc.
,
167
(
10
), p.
104507
.
12.
Thomas
,
A.
,
Maranzana
,
G.
,
Didierjean
,
S.
,
Dillet
,
J.
, and
Lottin
,
O.
,
2014
, “
Thermal and Water Transfer in PEMFCs: Investigating the Role of the Microporous Layer
,”
Int. J. Hydrogen Energy
,
39
(
6
), pp.
2649
2658
. 10.1016/j.ijhydene.2013.11.105
13.
Owejan
,
J. P.
,
Owejan
,
J. E.
,
Gu
,
W.
,
Trabold
,
T. A.
,
Tighe
,
T. W.
, and
Mathias
,
M. F.
,
2010
, “
Water Transport Mechanisms in PEMFC Gas Diffusion Layers
,”
J. Electrochem. Soc.
,
157
(
10
), pp.
B1456
B1464
.
14.
Mortazavi
,
M.
, and
Tajiri
,
K.
,
2014
, “
In-Plane Microstructure of Gas Diffusion Layers With Different Properties for PEFC
,”
ASME J. Fuel Cell Sci. Technol.
,
11
(
2
), p.
021002
. 10.1115/1.4025930
15.
Ge
,
N.
,
Chevalier
,
S.
,
Lee
,
J.
,
Yip
,
R.
,
Banerjee
,
R.
,
George
,
M. G.
,
Liu
,
H.
,
Lee
,
C. H.
,
Fazeli
,
M.
,
Antonacci
,
P.
,
Kotaka
,
T.
,
Tabuchi
,
Y.
, and
Bazylak
,
A.
,
2017
, “
Non-Isothermal Two-Phase Transport in a Polymer Electrolyte Membrane Fuel Cell With Crack-Free Microporous Layers
,”
Int. J. Heat Mass Transfer
,
107
, pp.
418
431
. 10.1016/j.ijheatmasstransfer.2016.11.045
16.
Lee
,
J.
,
Yip
,
R.
,
Antonacci
,
P.
,
Ge
,
N.
,
Kotaka
,
T.
,
Tabuchi
,
Y.
, and
Bazylak
,
A.
,
2015
, “
Synchrotron Investigation of Microporous Layer Thickness on Liquid Water Distribution in a PEM Fuel Cell
,”
J. Electrochem. Soc.
,
162
(
7
), pp.
F669
F676
. 10.1149/2.0221507jes
17.
Ji
,
Y.
,
Luo
,
G.
, and
Wang
,
C.-Y.
,
2010
, “
Pore-Level Liquid Water Transport Through Composite Diffusion Media of PEMFC
,”
J. Electrochem. Soc.
,
157
(
12
), pp.
B1753
B1761
. 10.1149/1.3491359
18.
Nam
,
J.
, and
Kaviany
,
M.
,
2003
, “
Effective Diffusivity and Water-Saturation Distribution in Single- and Two-Layer PEMFC Diffusion Medium
,”
Int. J. Heat Mass Transfer
,
46
(
24
), pp.
4595
4611
. 10.1016/S0017-9310(03)00305-3
19.
Pasaogullari
,
U.
,
2005
, “
Two-Phase Transport in Polymer Electrolyte Fuel Cells With Bilayer Cathode Gas Diffusion Media
,”
J. Electrochem. Soc.
,
152
(
8
), pp.
A1574
A1582
. 10.1149/1.1938067
20.
Pasaogullari
,
U.
, and
Wang
,
C.-Y
,
2004
, “
Two-Phase Transport and the Role of Micro-Porous Layer in Polymer Electrolyte Fuel Cells
,”
Electrochim. Acta
,
49
(
25
), pp.
4359
4369
. 10.1016/j.electacta.2004.04.027
21.
Park
,
G. G.
,
Sohn
,
Y. J.
,
Yang
,
T. H.
,
Yoon
,
Y. G.
,
Lee
,
W. Y.
, and
Kim
,
C. S.
,
2004
, “
Effect of PTFE Contents in the Gas Diffusion Media on the Performance of PEMFC
,”
J. Power Sources
,
131
(
1–2
), pp.
182
187
. 10.1016/j.jpowsour.2003.12.037
22.
Hussaini
,
I. S.
, and
Wang
,
C. Y.
,
2009
, “
Visualization and Quantification of Cathode Channel Flooding in PEM Fuel Cells
,”
J. Power Sources
,
187
(
12
), pp.
444
451
. 10.1016/j.jpowsour.2008.11.030
23.
Zhang
,
F. Y.
,
Yang
,
X. G.
, and
Wang
,
C. Y.
,
2006
, “
Liquid Water Removal From a Polymer Electrolyte Fuel Cell
,”
J. Electrochem. Soc.
,
153
(
2
), p.
A225
. 10.1149/1.2138675
24.
Klaus
,
D.
,
Pocza
,
T.
, and
Hebling
,
C.
,
2003
, “
Visualization of Water Buildup in the Cathode of a Transparent PEM Fuel Cell
,”
J. Power Sources
,
124
(
2
), pp.
403
414
. 10.1016/S0378-7753(03)00797-3
25.
Kumbur
,
E. C.
,
Sharp
,
K. V.
, and
Mench
,
M. M.
,
2006
, “
Liquid Droplet Behavior and Instability in a Polymer Electrolyte Fuel Cell Flow Channel
,”
J. Power Sources
,
161
(
1
), pp.
333
345
. 10.1016/j.jpowsour.2006.04.093
26.
Owejan
,
J. P.
,
Trabold
,
T. A.
,
Jacobson
,
D. L.
,
Arif
,
M.
, and
Kandlikar
,
S. G.
,
2007
, “
Effects of Flow Field and Diffusion Layer Properties on Water Accumulation in a PEM Fuel Cell
,”
Int. J. Hydrogen Energy
,
32
, pp.
4489
4502
. 10.1016/j.ijhydene.2007.05.044
27.
Hickner
,
M. A.
,
Siegel
,
N. P.
,
Chen
,
K. S.
,
Hussey
,
D. S.
,
Jacobson
,
D. L.
, and
Arif
,
M.
,
2008
, “
In Situ High-Resolution Neutron Radiography of Cross-Sectional Liquid Water Profiles in Proton Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
,
155
(
4
), p.
B427
. 10.1149/1.2826287
28.
Sinha
,
P. K.
,
Halleck
,
P.
, and
Wang
,
C. Y.
,
2006
, “
Quantification of Liquid Water Saturation in a PEM Fuel Cell Diffusion Medium Using X-Ray Microtomography
,”
Electrochem. Solid-State Lett.
,
9
(
7
), pp.
A344
A348
. 10.1149/1.2203307
29.
Lee
,
S. J.
,
Lim
,
N. Y.
,
Kim
,
S.
,
Park
,
G. G.
, and
Kim
,
C. S.
,
2008
, “
X-Ray Imaging of Water Distribution in a Polymer Electrolyte Fuel Cell
,”
J. Power Sources
,
185
(
2
), pp.
867
870
. 10.1016/j.jpowsour.2008.08.101
30.
Mench
,
M. M.
,
Dong
,
Q. L.
, and
Wang
,
C. Y.
,
2003
, “
In Situ Water Distribution Measurements in a Polymer Electrolyte Fuel Cell
,”
J. Power Sources
,
124
(
1
), pp.
90
98
. 10.1016/S0378-7753(03)00617-7
31.
Yang
,
X. G.
,
Burke
,
N.
,
Wang
,
C. Y.
,
Tajiri
,
K.
, and
Shinoharab
,
K.
,
2005
, “
Simultaneous Measurements of Species and Current Distributions in a PEFC Under Low-Humidity Operation
,”
J. Electrochem. Soc.
,
152
(
4
), pp.
A759
A766
. 10.1149/1.1864492
32.
Bazylak
,
A.
,
2009
, “
Liquid Water Visualization in PEM Fuel Cells: A Review
,”
Int. J. Hydrogen Energy
,
34
(
9
), pp.
3845
3857
. 10.1016/j.ijhydene.2009.02.084
33.
Kandlikar
,
S. G.
,
Lu
,
Z.
,
Domigan
,
W. E.
,
White
,
A. D.
, and
Benedict
,
M. W.
,
2009
, “
Measurement of Flow Maldistribution in Parallel Channels and Its Application to Ex-Situ and In-Situ Experiments in PEMFC Water Management Studies
,”
Int. J. Heat Mass Transfer
,
52
(
7–8
), pp.
1741
1752
. 10.1016/j.ijheatmasstransfer.2008.09.025
34.
English
,
N. J.
, and
Kandlikar
,
S. G.
,
2006
, “
An Experimental Investigation Into the Effect of Surfactants on Air-Water Two-Phase Flow in Minichannels
,”
Heat Transfer Eng.
,
27
(
4
), pp.
99
109
. 10.1080/01457630500523980
35.
Barbir
,
F.
,
Gorgun
,
H.
, and
Wang
,
X.
,
2005
, “
Relationship Between Pressure Drop and Cell Resistance as a Diagnostic Tool for PEM Fuel Cells
,”
J. Power Sources
,
141
(
1
), pp.
96
101
. 10.1016/j.jpowsour.2004.08.055
36.
Mortazavi
,
M.
, and
Tajiri
,
K.
,
2015
, “
Two-Phase Flow Pressure Drop in Flow Channels of Proton Exchange Membrane Fuel Cells: Review of Experimental Approaches
,”
Renew. Sustain. Energy Rev.
,
45
, pp.
296
317
. 10.1016/j.rser.2015.01.044
37.
Zhang
,
L.
,
Bi
,
X. T.
,
Wilkinson
,
D. P.
,
Anderson
,
R.
,
Stumper
,
J.
, and
Wang
,
H.
,
2011
, “
Gas–Liquid Two-Phase Flow Behavior in Minichannels Bounded With a Permeable Wall
,”
Chem. Eng. Sci.
,
66
(
14
), pp.
3377
3385
. 10.1016/j.ces.2011.01.030
38.
Mortazavi
,
M.
,
Heidari
,
M.
, and
Niknam
,
S. A.
,
2019
, “
A Discussion About Two-Phase Flow Pressure Drop in Proton Exchange Membrane Fuel Cells
,”
Heat Transfer Eng.
,
41
(
21
), pp.
1
16
.
39.
Anderson
,
R.
,
Wilkinson
,
D. P.
,
Bi
,
X.
, and
Zhang
,
L.
,
2011
, “
Two-Phase Flow Pressure Drop Hysteresis in an Operating Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
,
196
(
19
), pp.
8031
8040
. 10.1016/j.jpowsour.2011.05.050
40.
Niknam
,
S. A.
,
Mortazavi
,
M.
, and
Santamaria
,
A. D.
,
2020
, “
Signature Analysis of Two-Phase Flow Pressure Drop in Proton Exchange Membrane Fuel Cell Flow Channels
,”
Res. Eng.
,
5
, p.
100071
.
41.
Zhang
,
L.
,
Du
,
W.
,
Bi
,
H. T.
,
Wilkinson
,
D. P.
,
Stumper
,
J.
, and
Wang
,
H.
,
2009
, “
Gas–Liquid Two-Phase Flow Distributions in Parallel Channels for Fuel Cells
,”
J. Power Sources
,
189
(
2
), pp.
1023
1031
. 10.1016/j.jpowsour.2009.01.010
42.
Chauhan
,
V.
,
Mortazavi
,
M.
,
Benner
,
J. Z.
, and
Santamaria
,
A. D.
,
2020
, “
Two-Phase Flow Characterization in PEM Fuel Cells Using Machine Learning
,”
Energy Rep.
,
6
, pp.
2713
2719
. 10.1016/j.egyr.2020.09.037
43.
Santamaria
,
A. D.
,
Mortazavi
,
M.
,
Chauhan
,
V.
,
Benner
,
J.
,
Philbrick
,
O.
,
Clemente
,
R.
,
Jia
,
H.
, and
Ling
,
C.
,
2020
, “
Applications of Artificial Intelligence for Analysis of Two-Phase Flow in PEM Fuel Cell Flow Fields
,”
ECS Trans.
,
98
, p.
279
. 10.1149/09809.0279ecst
44.
Ous
,
T.
, and
Arcoumanis
,
C.
,
2007
, “
Visualisation of Water Droplets During the Operation of PEM Fuel Cells
,”
J. Power Sources
,
173
(
1
), pp.
137
148
. 10.1016/j.jpowsour.2007.04.075
45.
Liu
,
X.
,
Guo
,
H.
,
Ye
,
F.
, and
Ma
,
C. F.
,
2008
, “
Flow Dynamic Characteristics in Flow Field of Proton Exchange Membrane Fuel Cells
,”
Int. J. Hydrogen Energy
,
33
(
3
), pp.
1040
1051
.
46.
Theodorakakos
,
A.
,
Ous
,
T.
,
Gavaises
,
M.
,
Nouri
,
J. M.
,
Nikolopoulos
,
N.
, and
Yanagihara
,
H.
,
2006
, “
Dynamics of Water Droplets Detached From Porous Surfaces of Relevance to PEM Fuel Cells
,”
J. Colloid Interface Sci.
,
300
(
2
), pp.
673
687
. 10.1016/j.jcis.2006.04.021
47.
Cho
,
S. C.
,
Wang
,
Y.
, and
Chen
,
K. S.
,
2012
, “
Droplet Dynamics in a Polymer Electrolyte Fuel Cell Gas Flow Channel: Forces, Deformation, and Detachment. I: Theoretical and Numerical Analyses
,”
J. Power Sources
,
206
, pp.
119
128
. 10.1016/j.jpowsour.2012.01.057
48.
Ge
,
S.
, and
Wang
,
C.-Y.
,
2007
, “
Liquid Water Formation and Transport in the PEFC Anode
,”
J. Electrochem. Soc.
,
154
(
10
), pp.
B998
B1005
. 10.1149/1.2761830
49.
Chen
,
K. S.
,
Hickner
,
M. A.
, and
Noble
,
D. R.
,
2005
, “
Simplified Models for Predicting the Onset of Liquid Water Droplet Instability at the Gas Diffusion Layer/Gas Flow Channel Interface
,”
Int. J. Energy Res.
,
29
(
12
), pp.
1113
1132
. 10.1002/er.1143
50.
Allen
,
J. S.
,
Son
,
S. Y.
, and
Collicott
,
S. H.
,
2010
,
Proton Exchange Membrane Fuel Cell (PEMFC) Flow-Field Design for Improved Water Management
(
Handbook of Fuel Cells
),
Wiley
,
Hoboken, NJ
.
51.
Herescu
,
A.
, and
Allen
,
J. S.
,
2007
, “
Wetting Effects on Two-Phase Flow in a Microchannel
,”
ASME 2007 International Mechanical Engineering Congress and Exposition
,
Seattle, WA
,
Nov. 11–15
, pp.
863
868
.
52.
Allen
,
J.
,
2006
, “
Two-Phase Flow in Small Channels and the Implications for PEM Fuel Cell Operation
,”
ECS Trans.
,
3
, p.
1197
. 10.1149/1.2356239
53.
Mortazavi
,
M.
, and
Tajiri
,
K.
,
2014
, “
Effect of the PTFE Content in the Gas Diffusion Layer on Water Transport in Polymer Electrolyte Fuel Cells (PEFCs)
,”
J. Power Sources
,
245
, pp.
236
244
. 10.1016/j.jpowsour.2013.06.138
54.
Migliaccio
,
C. P.
,
2014
, “
Resonance-Induced Condensate Shedding for High-Efficiency Heat Transfer
,”
Int. J. Heat Mass Transfer
,
79
, pp.
720
726
. 10.1016/j.ijheatmasstransfer.2014.08.054
55.
Kim
,
H. Y.
,
2004
, “
Drop Fall-Off From the Vibrating Ceiling
,”
Phys. Fluids
,
16
(
2
), pp.
474
477
. 10.1063/1.1637352
56.
Choe
,
Y.
, and
Kim
,
E. S.
,
2013
, “
Valveless Micropump Driven by Acoustic Streaming
,”
J. Micromech. Microeng.
,
23
(
4
), p.
045005
. 10.1088/0960-1317/23/4/045005
57.
Cheung
,
Y. N.
,
Nguyen
,
N. T.
, and
Wong
,
T. N.
,
2014
, “
Droplet Manipulation in a Microfluidic Chamber With Acoustic Radiation Pressure and Acoustic Streaming
,”
Soft Matter
,
10
(
40
), pp.
8122
8132
. 10.1039/C4SM01453G
58.
Allen
,
J. S.
,
2013
, “Water Removal From Gas Flow Channels of fuel Cells,” US Patent 8,524,410.
59.
Palan
,
V.
,
Shepard Jr
,
W. S.
, and
Williams
,
K. A.
,
2006
, “
Removal of Excess Product Water in a PEM Fuel Cell Stack by Vibrational and Acoustical Methods
,”
J. Power Sources
,
161
(
2
), pp.
1116
1125
. 10.1016/j.jpowsour.2006.06.021
60.
Schafer
,
A. M.
, and
Allen
,
J. S.
,
2011
, “
Improved Water Removal From Fuel Cell Flow Channels Via Natural Frequency Excitation of Free Surfaces
,”
ECS Trans.
,
41
(
11
), pp.
1887
1896
. 10.1149/1.3635719
61.
Schafer
,
A. M.
,
2010
, “
A Technique for Improved Water Removal From PEM Fuel Cells Via Natural Frequency Excitation of Free Surfaces
,”
M.S. thesis
,
Michigan Technological University
,
Houghton, MI
.
62.
Mortazavi
,
M.
,
Santamaria
,
A. D.
,
Benner
,
J. Z.
, and
Chauhan
,
V.
,
2019
, “
Enhanced Water Removal From PEM Fuel Cells Using Acoustic Pressure Waves
,”
J. Electrochem. Soc.
,
166
(
7
), pp.
F3143
F3153
. 10.1149/2.0211907jes
You do not currently have access to this content.