Abstract

Long-cycling performance of Li–S batteries was studied with the high-sulfur loading composites composed of 86% sulfur and 14% carbon. The composites are made by the physical mixing and S-liquefied pore-filling processes with nano sulfur powder and two kinds of porous carbons. The initial discharge capacities of the composite prepared by the physical mixing and liquefied pore-filling with 1-μm-sized carbon were 1060 mAh/g and 1121 mAh/g, respectively. On the other hand, the capacities of the composite using 5-μm-sized carbon were 705 mAh/g in physical mixing and 845 mAh/g in the liquefied pore-filling process. The composite with the 1-μm carbon showed approximately ∼1.4 times higher than that of 5 μm. The reason for this difference is that the surface area of the sulfur wrapping the small particle carbon surface is larger than that of the composite wrapping the large particle carbon surface. Importantly, after 500 cycles, the cycle stability in the physical mixing process is 15∼30% higher than that in the S-liquefied pore-filling process in both carbons, due to the decrease of electrolyte resistance by capturing polysulfide into the pores which are not filled by the sulfur during the process. In the case of high-sulfur loading composites, the manufacturing process as well as the size and morphologies of the carbon are crucial factors that affect the capacity and cycle stability of the Li–S battery.

References

1.
Owusu
,
P. A.
and
Asumadu-Sarkodie
,
S.
,
2016
, “
A Review of Renewable Energy Sources, Sustainability Issues and Climate Change Mitigation
,”
Cogent Eng.
,
3
(
1
), pp.
1
14
. http://dx.doi.org/10.1080/23311916.2016.1167990
2.
Greenwood
,
N. N.
, and
Earnshaw
,
A.
,
2012
,
Chemistry of the Elements
,
Elsevier
,
New York
.
3.
Jayaprakash
,
N.
,
Shen
,
J.
,
Moganty
,
S. S.
,
Corona
,
A.
, and
Archer
,
L. A.
,
2011
, “
Porous Hollow Carbon@ Sulfur Composites for High-Power Lithium–Sulfur Batteries
,”
Angew. Chem., Int. Ed.
,
50
(
26
), pp.
5904
5908
. 10.1002/anie.201100637
4.
Ji
,
L.
,
Rao
,
M.
,
Zheng
,
H.
,
Zhang
,
L.
,
Li
,
Y.
,
Duan
,
W.
,
Guo
,
J.
,
Cairns
,
E. J.
, and
Zhang
,
Y.
,
2011
, “
Graphene Oxide as a Sulfur Immobilizer in High Performance Lithium/Sulfur Cells
,”
J. Am. Chem. Soc.
,
133
(
46
), pp.
18522
18525
. 10.1021/ja206955k
5.
Rauh
,
R.
,
Abraham
,
K.
,
Pearson
,
G.
,
Surprenant
,
J.
, and
Brummer
,
S.
,
1979
, “
A Lithium/Dissolved Sulfur Battery With an Organic Electrolyte
,”
J. Electrochem. Soc.
,
126
(
4
), p.
523
. 10.1149/1.2129079
6.
Barchasz
,
C.
,
Leprêtre
,
J.-C.
,
Alloin
,
F.
, and
Patoux
,
S.
,
2012
, “
New Insights Into the Limiting Parameters of the Li/S Rechargeable Cell
,”
J. Power Sources
,
199
, pp.
322
330
. 10.1016/j.jpowsour.2011.07.021
7.
Barchasz
,
C.
,
Mesguich
,
F.
,
Dijon
,
J.
,
Leprêtre
,
J.-C.
,
Patoux
,
S.
, and
Alloin
,
F.
,
2012
, “
Novel Positive Electrode Architecture for Rechargeable Lithium/Sulfur Batteries
,”
J. Power Sources
,
211
, pp.
19
26
. 10.1016/j.jpowsour.2012.03.062
8.
Ji
,
X.
,
Evers
,
S.
,
Black
,
R.
, and
Nazar
,
L. F.
,
2011
, “
Stabilizing Lithium–Sulphur Cathodes Using Polysulphide Reservoirs
,”
Nat. Commun.
,
2
(
1
), pp.
1
7
. 10.1038/ncomms1293
9.
Ji
,
X.
, and
Nazar
,
L. F.
,
2010
, “
Advances in Li–S Batteries
,”
J. Mater. Chem.
,
20
(
44
), pp.
9821
9826
. 10.1039/b925751a
10.
Barchasz
,
C.
,
Molton
,
F.
,
Duboc
,
C.
,
Leprêtre
,
J.-C.
,
Patoux
,
S.
, and
Alloin
,
F.
,
2012
, “
Lithium/Sulfur Cell Discharge Mechanism: An Original Approach for Intermediate Species Identification
,”
Anal. Chem.
,
84
(
9
), pp.
3973
3980
. 10.1021/ac2032244
11.
Guo
,
J.
,
Xu
,
Y.
, and
Wang
,
C.
,
2011
, “
Sulfur-Impregnated Disordered Carbon Nanotubes Cathode for Lithium–Sulfur Batteries
,”
Nano Lett.
,
11
(
10
), pp.
4288
4294
. 10.1021/nl202297p
12.
Danner
,
T.
,
Zhu
,
G.
,
Hofmann
,
A. F.
, and
Latz
,
A.
,
2015
, “
Modeling of Nano-structured Cathodes for Improved Lithium-Sulfur Batteries
,”
Electrochim. Acta
,
184
, pp.
124
133
. 10.1016/j.electacta.2015.09.143
13.
Marinescu
,
M.
,
O’Neill
,
L.
,
Zhang
,
T.
,
Walus
,
S.
,
Wilson
,
T. E.
, and
Offer
,
G. J.
,
2017
, “
Irreversible vs Reversible Capacity Fade of Lithium-Sulfur Batteries During Cycling: The Effects of Precipitation and Shuttle
,”
J. Electrochem. Soc.
,
165
(
1
), pp.
A6107
A6118
. 10.1149/2.0171801jes
14.
Choi
,
Y.-J.
,
Kim
,
K.-W.
,
Ahn
,
H.-J.
, and
Ahn
,
J.-H.
,
2008
, “
Improvement of Cycle Property of Sulfur Electrode for Lithium/Sulfur Battery
,”
J. Alloys Compd.
,
449
(
1-2
), pp.
313
316
. 10.1016/j.jallcom.2006.02.098
15.
Zheng
,
W.
,
Liu
,
Y.
,
Hu
,
X.
, and
Zhang
,
C.
,
2006
, “
Novel Nanosized Adsorbing Sulfur Composite Cathode Materials for the Advanced Secondary Lithium Batteries
,”
Electrochim. Acta
,
51
(
7
), pp.
1330
1335
. 10.1016/j.electacta.2005.06.021
16.
Fanous
,
J.
,
Wegner
,
M.
,
Grimminger
,
J.
,
Andresen
,
A. n.
, and
Buchmeiser
,
M. R.
,
2011
, “
Structure-Related Electrochemistry of Sulfur-Poly (Acrylonitrile) Composite Cathode Materials for Rechargeable Lithium Batteries
,”
Chem. Mater.
,
23
(
22
), pp.
5024
5028
. 10.1021/cm202467u
17.
Wu
,
F.
,
Chen
,
J.
,
Li
,
L.
,
Zhao
,
T.
, and
Chen
,
R.
,
2011
, “
Improvement of Rate and Cycle Performance by Rapid Polyaniline Coating of a MWCNT/Sulfur Cathode
,”
J. Phys. Chem. C
,
115
(
49
), pp.
24411
24417
. 10.1021/jp207893d
18.
Hassoun
,
J.
, and
Scrosati
,
B.
,
2010
, “
A High-Performance Polymer Tin Sulfur Lithium Ion Battery
,”
Angew. Chem., Int. Ed.
,
49
(
13
), pp.
2371
2374
. 10.1002/anie.200907324
19.
Vakifahmetoglu
,
C.
,
Presser
,
V.
,
Yeon
,
S.-H.
,
Colombo
,
P.
, and
Gogotsi
,
Y.
,
2011
, “
Enhanced Hydrogen and Methane Gas Storage of Silicon Oxycarbide Derived Carbon
,”
Microporous Mesoporous Mater.
,
144
(
1-3
), pp.
105
112
. 10.1016/j.micromeso.2011.03.042
20.
Yeon
,
S.-H.
,
Reddington
,
P.
,
Gogotsi
,
Y.
,
Fischer
,
J. E.
,
Vakifahmetoglu
,
C.
, and
Colombo
,
P.
,
2010
, “
Carbide-Derived-Carbons With Hierarchical Porosity From a Preceramic Polymer
,”
Carbon
,
48
(
1
), pp.
201
210
. 10.1016/j.carbon.2009.09.004
21.
Ma
,
S.
,
Sun
,
D.
,
Simmons
,
J. M.
,
Collier
,
C. D.
,
Yuan
,
D.
, and
Zhou
,
H.-C.
,
2008
, “
Metal-Organic Framework From an Anthracene Derivative Containing Nanoscopic Cages Exhibiting High Methane Uptake
,”
J. Am. Chem. Soc.
,
130
(
3
), pp.
1012
1016
. 10.1021/ja0771639
22.
Wang
,
X.-S.
,
Ma
,
S.
,
Rauch
,
K.
,
Simmons
,
J. M.
,
Yuan
,
D.
,
Wang
,
X.
,
Yildirim
,
T.
,
Cole
,
W. C.
,
López
,
J. J.
, and
Meijere
,
A. d.
,
2008
, “
Metal− Organic Frameworks Based on Double-Bond-Coupled di-Isophthalate Linkers With High Hydrogen and Methane Uptakes
,”
Chem. Mater.
,
20
(
9
), pp.
3145
3152
. 10.1021/cm800403d
23.
Xu
,
R.
,
Xiang
,
J.
,
Feng
,
J.
,
Lu
,
X.
,
Hao
,
Z.
,
Kang
,
L.
,
Li
,
M.
,
Wu
,
Y.
,
Tan
,
C.
,
Liu
,
Y.
,
He
,
G.
,
Brett
,
D. J. L.
,
Shearing
,
P. R.
,
Yuan
,
L.
,
Huang
,
Y.
, and
Wang
,
F. R.
,
2020
, “
In Situ Visualization by X-Ray Computed Tomography on Sulfur Stabilization and Lithium Polysulfides Immobilization in S@HCS/MnOx Cathode
,”
Energy Storage Mater.
,
31
, pp.
164
171
. 10.1016/j.ensm.2020.06.011
24.
Seo
,
H. K.
,
Hwa
,
Y.
,
Chang
,
J. H.
,
Park
,
J. Y.
,
Lee
,
J. S.
,
Park
,
J.
,
Cairns
,
E. J.
, and
Yuk
,
J. M.
,
2020
, “
Direct Visualization of Lithium Polysulfides and Their Suppression in Liquid Electrolyte
,”
Nano Lett.
,
20
(
3
), pp.
2080
2086
. 10.1021/acs.nanolett.0c00058
25.
Schuster
,
J.
,
He
,
G.
,
Mandlmeier
,
B.
,
Yim
,
T.
,
Lee
,
K. T.
,
Bein
,
T.
, and
Nazar
,
L. F.
,
2012
, “
Spherical Ordered Mesoporous Carbon Nanoparticles With High Porosity for Lithium–Sulfur Batteries
,”
51
(
15
), pp.
3591
3595
. 10.1002/ange.201107817
26.
Yeon
,
S.-H.
,
Jung
,
K.-N.
,
Yoon
,
S.
,
Shin
,
K.-H.
,
Jin
,
C.-S.
, and
Kim
,
Y.
,
2013
, “
Improved Electrochemical Performances of Sulfur-Microporous Carbon Composite Electrode for Li/S Battery
,”
J. Appl. Electrochem.
,
43
(
3
), pp.
245
252
. 10.1007/s10800-012-0510-5
27.
Eftekhari
,
A.
, and
Kim
,
D.-W.
,
2017
, “
Cathode Materials for Lithium–Sulfur Batteries: A Practical Perspective
,”
J. Mater. Chem. A
,
5
(
34
), pp.
17734
17776
. 10.1039/C7TA00799J
28.
Ji
,
X.
,
Lee
,
K. T.
, and
Nazar
,
L. F.
,
2009
, “
A Highly Ordered Nanostructured Carbon–Sulphur Cathode for Lithium–Sulphur Batteries
,”
Nat. Mater.
,
8
(
6
), pp.
500
506
. 10.1038/nmat2460
29.
Kim
,
H.
,
Lee
,
J.
,
Ahn
,
H.
,
Kim
,
O.
, and
Park
,
M. J.
,
2015
, “
Synthesis of Three-Dimensionally Interconnected Sulfur-Rich Polymers for Cathode Materials of High-Rate Lithium–Sulfur Batteries
,”
Nat. Commun.
,
6
(
1
), p.
7278
. 10.1038/ncomms8278
30.
Li
,
G.
,
Zhao
,
W.
,
Liu
,
L.
, and
Chen
,
L.
,
2015
, “
Effects of Electrolyte Concentration and Synthesis Methods of Sulfur/Carbon Composites on the Electrochemical Performance in Lithium–Sulfur Batteries
,”
RSC Adv.
,
5
(
67
), pp.
54293
54300
. 10.1039/C5RA08939E
31.
Li
,
C.
,
Ward
,
A. L.
,
Doris
,
S. E.
,
Pascal
,
T. A.
,
Prendergast
,
D.
, and
Helms
,
B. A.
,
2015
, “
Polysulfide-Blocking Microporous Polymer Membrane Tailored for Hybrid Li-Sulfur Flow Batteries
,”
Nano Lett.
,
15
(
9
), pp.
5724
5729
. 10.1021/acs.nanolett.5b02078
32.
Krossing
,
I.
,
2003
, “
Elemental Sulfur and Sulfur-Rich Compounds I, Chapter: Homoatomic Sulfur Cations
,”
Top.Curr.Chem.
,
230
, pp.
135
152
. 10.1007/b12112
33.
Steudel
,
R.
,
2003
, “
Elemental Sulfur and Sulfur-Rich Compounds I, Chapter: Liquid Sulfur
,”
Top Curr. Chem.
,
230
, pp.
81
116
. 10.1007/b12111
34.
Vaganova
,
E.
,
Wachtel
,
E.
,
Rozenberg
,
H.
,
Khodorkovsky
,
V.
,
Leitus
,
G.
,
Shimon
,
L.
,
Reich
,
S.
, and
Yitzchaik
,
S.
,
2004
, “
Photolysis of 4, 4 ‘-Dithiodipyridine Produces c Yclo-Octasulfur Molecules: A Basis for Au/S8 Microcrystalline Systems
,”
Chem. Mater.
,
16
(
21
), pp.
3976
3979
. 10.1021/cm048640e
35.
Brunauer
,
S.
,
Emmett
,
P. H.
, and
Teller
,
E.
,
1938
, “
Adsorption of Gases in Multimolecular Layers
,”
J. Am. Chem. Soc.
,
60
(
2
), pp.
309
319
. 10.1021/ja01269a023
36.
Park
,
S.-J.
,
Park
,
B.-J.
, and
Ryu
,
S.-K.
,
1999
, “
Electrochemical Treatment on Activated Carbon Fibers for Increasing the Amount and Rate of Cr (VI) Adsorption
,”
Carbon
,
37
(
8
), pp.
1223
1226
. 10.1016/S0008-6223(98)00318-2
You do not currently have access to this content.