Abstract

Nano-LiMn2O4 was successfully synthesized by a low-temperature hydrothermal route with the absence of post-calcination treatment. Employing ethanol as an organic reagent triggers the formation of nanostructured particles approximately 30.39 nm in diameter, associated with 0.007 lattice strain. The pure phase of nano-LiMn2O4/Li displays outstanding electrochemical performances. Under 4.6 V versus Li+/Li cut-off potential, 74.3% of capacity is reserved when C-rate is increased by 50 times, while excellent capacity restoration of 96.9% after cycled again at 1 C. After 331 cycles, a capacity retention of 84.3% is harvested by nano-LiMn2O4/Li, implying the absence of phase transformations in spinel structures under such abuse conditions. This remarkable structural stability can be attributed to the small lattice strain, associated with high Li+ diffusion coefficient, which is estimated to be 10−9.76 cm2 s−1 by the EIS technique. Additionally, Li+ extraction is more favorable when nano-LiMn2O4/Li is charged up to 4.6 V versus Li+/Li, interpreted by the polarization resistance (Rp) of the cell.

References

1.
Masurkar
,
N.
,
Babu
,
G.
,
Porchelvan
,
S.
, and
Reddy Arava
,
L. M.
,
2018
, “
Millimeter-Scale Lithium Ion Battery Packaging for High-Temperature Sensing Applications
,”
J. Power Sources
,
399
, pp.
179
185
. 10.1016/j.jpowsour.2018.07.077
2.
Miroshnikov
,
M.
,
Mahankali
,
K.
,
Thangavel
,
N. K.
,
Satapathy
,
S.
,
Arava
,
L. M. R.
,
Ajayan
,
P. M.
, and
John
,
G.
,
2020
, “
Bioderived Molecular Electrodes for Next-Generation Energy-Storage Materials
,”
ChemSusChem
,
13
(
9
), pp.
2186
2204
. 10.1002/cssc.201903589
3.
Aricò
,
A. S.
,
Bruce
,
P.
,
Scrosati
,
B.
,
Tarascon
,
J.-M.
, and
van Schalkwijk
,
W.
,
2005
, “
Nanostructured Materials for Advanced Energy Conversion and Storage Devices
,”
Nat. Mater.
,
4
(
5
), pp.
366
377
. 10.1038/nmat1368
4.
Gummow
,
R. J.
,
de Kock
,
A.
, and
Thackeray
,
M. M.
,
1994
, “
Improved Capacity Retention in Rechargeable 4 V Lithium/Lithium-Manganese Oxide (Spinel) Cells
,”
Solid State Ion.
,
69
(
1
), pp.
59
67
. 10.1016/0167-2738(94)90450-2
5.
Xie
,
X.
,
Dong
,
Y.
,
Liu
,
H.
, and
Kang
,
J.
,
2014
, “
Identifying Torsional Modal Parameters of Large Turbine Generators Based on the Supplementary-Excitation-Signal-Injection Test
,”
Int. J. Electr. Power Energy Syst.
,
56
, pp.
1
8
. 10.1016/j.ijepes.2013.10.030
6.
Goodenough
,
J. B.
,
1994
, “
Design Considerations
,”
Solid State Ion.
,
69
(
3–4
), pp.
184
198
. 10.1016/0167-2738(94)90409-X
7.
Du Pasquier
,
A.
,
Blyr
,
A.
,
Courjal
,
P.
,
Larcher
,
D.
,
Amatucci
,
G.
,
Gerand
,
B.
, and
Tarascon
,
J. M.
,
1999
, “
Mechanism for Limited 55 °C Storage Performance of Li1.05Mn1.95O4 Electrodes
,”
J. Electrochem. Soc.
,
146
(
2
), p.
428
. 10.1149/1.1391625
8.
Thackeray
,
M. M.
,
Shao-Horn
,
Y.
,
Kahaian
,
A. J.
,
Kepler
,
K. D.
,
Skinner
,
E.
,
Vaughey
,
J. T.
, and
Hackney
,
S. A.
,
1998
, “
Structural Fatigue in Spinel Electrodes in High Voltage (4 V) Li/LixMn2O4 Cells
,”
Electrochem. Solid St.
,
1
(
1
), p.
7
. 10.1149/1.1390617
9.
Tarascon
,
J.
,
McKinnon
,
W.
,
Coowar
,
F.
,
Bowmer
,
T.
,
Amatucci
,
G.
, and
Guyomard
,
D.
,
1994
, “
Synthesis Conditions and Oxygen Stoichiometry Effects on Li Insertion Into the Spinel LiMn2O4
,”
J. Electrochem. Soc.
,
141
(
6
), p.
1421
. 10.1149/1.2054941
10.
Gao
,
Y.
, and
Dahn
,
J.
,
1996
, “
Synthesis and Characterization of Li1+XMn2−XO4 for Li-Ion Battery Applications
,”
J. Electrochem. Soc.
,
143
(
1
), p.
100
. 10.1149/1.1836393
11.
Huang
,
H.
,
Vincent
,
C. A.
, and
Bruce
,
P. G.
,
1999
, “
Correlating Capacity Loss of Stoichiometric and Nonstoichiometric Lithium Manganese Oxide Spinel Electrodes with Their Structural Integrity
,”
J. Electrochem. Soc.
,
146
(
10
), p.
3649
. 10.1149/1.1392528
12.
Yamane
,
H.
,
Inoue
,
T.
,
Fujita
,
M.
, and
Sano
,
M.
,
2001
, “
A Causal Study of the Capacity Fading of Li1. 01Mn1. 99O4 Cathode at 80 °C, and the Suppressing Substances of Its Fading
,”
J. Power Sources
,
99
(
1–2
), pp.
60
65
. 10.1016/S0378-7753(01)00479-7
13.
Lee
,
J. H.
,
Hong
,
J. K.
,
Jang
,
D. H.
,
Sun
,
Y.-K.
, and
Oh
,
S. M.
,
2000
, “
Degradation Mechanisms in Doped Spinels of LiM0. 05Mn1. 95O4 (M = Li, B, Al, Co, and Ni) for Li Secondary Batteries
,”
J. Power Sources
,
89
(
1
), pp.
7
14
. 10.1016/S0378-7753(00)00375-X
14.
Chebiam
,
R.
,
Kannan
,
A. M.
,
Prado
,
F.
, and
Manthiram
,
A.
,
2001
, “
Comparison of the Chemical Stability of the High Energy Density Cathodes of Lithium-Ion Batteries
,”
Electrochem. Commun.
,
3
(
11
), pp.
624
627
. 10.1016/S1388-2481(01)00232-6
15.
Fell
,
C. R.
,
Qian
,
D.
,
Carroll
,
K. J.
,
Chi
,
M.
,
Jones
,
J. L.
, and
Meng
,
Y. S.
,
2013
, “
Correlation Between Oxygen Vacancy, Microstrain, and Cation Distribution in Lithium-Excess Layered Oxides During the First Electrochemical Cycle
,”
Chem. Mater.
,
25
(
9
), pp.
1621
1629
. 10.1021/cm4000119
16.
Yao
,
J.
,
Shen
,
C.
,
Zhang
,
P.
,
Gregory
,
D. H.
, and
Wang
,
L.
,
2012
, “
Enhanced Cycle Ability of Spinel LiMn2O4 by Controlling the Phase Purity and Structural Strain
,”
J. Phys. Chem. Solids
,
73
(
11
), pp.
1390
1395
. 10.1016/j.jpcs.2012.07.006
17.
Fajar
,
A.
,
Gunawan
,
G.
,
Kartini
,
E.
,
Mugirahardjo
,
H.
, and
Ihsan
,
M.
,
2011
, “
Crystallite Size and Microstrain Measurement of Cathode Material After Mechanical Milling Using Neutron Diffraction Technique
,”
Atom Indones.
,
36
(
3
), pp.
111
115
. 10.17146/aij.2010.27
18.
Lee
,
E.-J.
,
Chen
,
Z.
,
Noh
,
H.-J.
,
Nam
,
S. C.
,
Kang
,
S.
,
Kim
,
D. H.
,
Amine
,
K.
, and
Sun
,
Y.-K.
,
2014
, “
Development of Microstrain in Aged Lithium Transition Metal Oxides
,”
Nano Lett.
,
14
(
8
), pp.
4873
4880
. 10.1021/nl5022859
19.
Shin
,
Y.
, and
Manthiram
,
A.
,
2002
, “
High Rate, Superior Capacity Retention LiMn2−2yLiyNiyO4 Spinel Cathodes for Lithium-Ion Batteries
,”
Electrochem. Solid St.
,
6
(
2
), p.
A34
. 10.1149/1.1535751
20.
Shin
,
Y.
, and
Manthiram
,
A.
,
2004
, “
Factors Influencing the Capacity Fade of Spinel Lithium Manganese Oxides
,”
J. Electrochem. Soc.
,
151
(
2
), p.
A204
. 10.1149/1.1634274
21.
Shin
,
Y.
, and
Manthiram
,
A.
,
2002
, “
Microstrain and Capacity Fade in Spinel Manganese Oxides
,”
Electrochem. Solid St.
,
5
(
3
), p.
A55
. 10.1149/1.1450063
22.
Zhang
,
W.
,
Zhao
,
Z.
,
Lei
,
Y.
,
Xing
,
J.
, and
Cao
,
X.
,
2020
, “
A Facile and Eco-Friendly Approach to Synthesis of Spinel LiMn2O4 with High Electrochemical Performance
,”
Int. J. Electrochem. Sci
,
15
(
7
), pp.
6188
6197
. 10.20964/2020.07.77
23.
Wang
,
S.
,
Luo
,
C.
,
Feng
,
Y.
,
Fan
,
G.
,
Feng
,
L.
,
Ren
,
M.
, and
Liu
,
B.
,
2020
, “
Electrochemical Properties and Microstructures of LiMn2O4 Cathodes Coated With Aluminum Zirconium Coupling Agents
,”
Ceram. Int.
,
46
(
9
), pp.
13003
13013
. 10.1016/j.ceramint.2020.02.070
24.
Tang
,
D.
,
Ben
,
L.
,
Sun
,
Y.
,
Chen
,
B.
,
Yang
,
Z.
,
Gu
,
L.
, and
Huang
,
X.
,
2014
, “
Electrochemical Behavior and Surface Structural Change of LiMn2O4 Charged to 5.1 V
,”
J. Mater. Chem. A
,
2
(
35
), pp.
14519
14527
. 10.1039/C4TA02109F
25.
Zhang
,
F.
,
Geng
,
T.
,
Peng
,
F.
,
Zhao
,
D.
,
Zhang
,
N.
,
Zhang
,
H.
, and
Li
,
S.
,
2019
, “
New Insights for the Abuse Tolerance Behavior of LiMn2O4 Under High Cut-Off Potential Conditions
,”
ChemElectroChem
,
6
(
3
), pp.
731
740
. 10.1002/celc.201801448
26.
Leifer
,
N.
,
Schipper
,
F.
,
Erickson
,
E. M.
,
Ghanty
,
C.
,
Talianker
,
M.
,
Grinblat
,
J.
,
Julien
,
C. M.
,
Markovsky
,
B.
, and
Aurbach
,
D.
,
2017
, “
Studies of Spinel-to-Layered Structural Transformations in LiMn2O4 Electrodes Charged to High Voltages
,”
J. Phys. Chem. C
,
121
(
17
), pp.
9120
9130
. 10.1021/acs.jpcc.7b00929
27.
Kandhasamy
,
S.
,
Babu
,
G.
,
Bhuvaneswari
,
D.
, and
Peter
,
A. J.
,
2011
, “
H2O2 Aided One-Pot Hydrothermal Synthesis of Nanocrystalline LiMn2O4 Cathode for Lithium Batteries
,”
IEEE Trans. Nanotechnol.
,
11
(
2
), pp.
314
320
. 10.1109/TNANO.2011.2171359
28.
Xie
,
N.
,
Li
,
Y.
,
Lu
,
Y.
,
Gong
,
J.
, and
Hu
,
X.
,
2020
, “
Electrochemically Controlled Reversible Lithium Capture and Release Enabled by LiMn2O4 Nanorods
,”
Chem. Electro. Chem.
,
7
(
1
), pp.
105
111
. 10.1002/celc.201901728
29.
Wei
,
C.
,
Fei
,
H.
,
An
,
Y.
,
Zhang
,
Y.
, and
Feng
,
J.
,
2019
, “
Crumpled Ti3C2Tx (Mxene) Nanosheet Encapsulated LiMn2O4 for High Performance Lithium-Ion Batteries
,”
Electrochim. Acta
,
309
, pp.
362
370
. 10.1016/j.electacta.2019.04.094
30.
Hamankiewicz
,
B.
,
Michalska
,
M.
,
Krajewski
,
M.
,
Ziolkowska
,
D.
,
Lipinska
,
L.
,
Korona
,
K.
,
Kaminska
,
M.
, and
Czerwinski
,
A.
,
2014
, “
The Effect of Electrode Thickness on Electrochemical Performance of LiMn2O4 Cathode Synthesized by Modified Sol–Gel Method
,”
Proceedings of the 19th International Conference on Solid State Ionics
,
Kyoto International Conference Center, Japan
,
June 2–7, 2013
.
31.
Strobel
,
P.
,
Le Cras
,
F.
,
Seguin
,
L.
,
Anne
,
M.
, and
Tarascon
,
J.
,
1998
, “
Oxygen Nonstoichiometry in Li–Mn–O Spinel Oxides: A Powder Neutron Diffraction Study
,”
J. Solid State Chem.
,
135
(
1
), pp.
132
139
. 10.1006/jssc.1997.7611
32.
Hayakawa
,
H.
,
Takada
,
T.
,
Enoki
,
H.
, and
Akiba
,
E.
,
1998
, “
New Findings on the Structural Phase Transitions of Spinel LiMn2O4 at Low Temperature
,”
J. Mater. Sci. Lett.
,
17
(
10
), pp.
811
812
. 10.1023/A:1006682304966
33.
Piszora
,
P.
,
Paszkowicz
,
W.
,
Baehtz
,
C.
, and
Wolska
,
E.
,
2004
, “
X-Ray Diffraction Studies on the Nature of the Phase Transition in the Stoichiometric LiMn2O4
,”
J. Alloys Compd.
,
382
(
1
), pp.
119
122
. 10.1016/j.jallcom.2004.06.009
34.
Yang
,
X.
,
Tang
,
W.
,
Liu
,
Z.
,
Makita
,
Y.
, and
Ooi
,
K.
,
2002
, “
Synthesis of Lithium-Rich LixMn2O4 Spinels by Lithiation and Heat-Treatment of Defective Spinels
,”
J. Mater. Chem.
,
12
(
3
), pp.
489
495
. 10.1039/b109463g
35.
Chung
,
H.-T.
,
Myung
,
S.-T.
,
Cho
,
T.-H.
, and
Son
,
J.-T.
,
2001
, “
Lattice Parameter as a Measure of Electrochemical Properties of LiMn2O4
,”
J. Power Sources
,
97
, pp.
454
457
. 10.1016/S0378-7753(01)00685-1
36.
Huang
,
Y.
,
Jiang
,
R.
,
Bao
,
S.-J.
,
Cao
,
Y.
, and
Jia
,
D.
,
2009
, “
LiMn2O4–YBry Nanoparticles Synthesized by a Room Temperature Solid-State Coordination Method
,”
Nanoscale Res. Lett.
,
4
(
4
), p.
353
. 10.1007/s11671-009-9252-7
37.
Christiansen
,
T. L.
,
Bøjesen
,
E. D.
,
Søndergaard
,
M.
,
Birgisson
,
S.
,
Becker
,
J.
, and
Iversen
,
B. B.
,
2016
, “
Crystal Structure, Microstructure and Electrochemical Properties of Hydrothermally Synthesised LiMn2O4
,”
Cryst. Eng. Comm.
,
18
(
11
), pp.
1996
2004
. 10.1039/C5CE02358K
38.
Liddle
,
B. J.
,
Collins
,
S. M.
, and
Bartlett
,
B. M.
,
2010
, “
A New One-Pot Hydrothermal Synthesis and Electrochemical Characterization of Li1+XMn2−YO4 Spinel Structured Compounds
,”
Energ. Environ. Sci.
,
3
(
9
), pp.
1339
1346
. 10.1039/c0ee00059k
39.
Halder
,
N.
, and
Wagner
,
C.
,
1966
, “
Separation of Particle Size and Lattice Strain in Integral Breadth Measurements
,”
Act Cryst.
,
20
(
2
), pp.
312
313
. 10.1107/S0365110X66000628
40.
Han
,
S.
,
Park
,
J.
,
Lu
,
W.
, and
Sastry
,
A. M.
,
2013
, “
Numerical Study of Grain Boundary Effect on Li+ Effective Diffusivity and Intercalation-Induced Stresses in Li-Ion Battery Active Materials
,”
J. Power Sources
,
240
, pp.
155
167
. 10.1016/j.jpowsour.2013.03.135
41.
Yu
,
S.
, and
Siegel
,
D. J.
,
2017
, “
Grain Boundary Contributions to Li-Ion Transport in the Solid Electrolyte Li7La3Zr2O12 (Llzo)
,”
Chem. Mater.
,
29
(
22
), pp.
9639
9647
. 10.1021/acs.chemmater.7b02805
42.
Im
,
D.
, and
Manthiram
,
A.
,
2003
, “
Nanostructured Lithium Manganese Oxide Cathodes Obtained by a Reduction of Aqueous Lithium Permanganate with Hydrogen
,”
J. Electrochem. Soc.
,
150
(
6
), pp.
A742
A746
. 10.1149/1.1570820
43.
Wang
,
B.
,
Han
,
Y.
,
Wang
,
X.
,
Bahlawane
,
N.
,
Pan
,
H.
,
Yan
,
M.
, and
Jiang
,
Y.
,
2018
, “
Prussian Blue Analogs for Rechargeable Batteries
,”
iScience
,
3
, pp.
110
133
. 10.1016/j.isci.2018.04.008
44.
Wheeler
,
S.
,
Capone
,
I.
,
Day
,
S.
,
Tang
,
C.
, and
Pasta
,
M.
,
2019
, “
Low-Potential Prussian Blue Analogues for Sodium-Ion Batteries: Manganese Hexacyanochromate
,”
Chem. Mater.
,
31
(
7
), pp.
2619
2626
. 10.1021/acs.chemmater.9b00471
45.
Chen
,
R.
,
Huang
,
Y.
,
Xie
,
M.
,
Wang
,
Z.
,
Ye
,
Y.
,
Li
,
L.
, and
Wu
,
F.
,
2016
, “
Chemical Inhibition Method to Synthesize Highly Crystalline Prussian Blue Analogs for Sodium-Ion Battery Cathodes
,”
ACS Appl. Mater. Interfaces
,
8
(
46
), pp.
31669
31676
. 10.1021/acsami.6b10884
46.
Ammundsen
,
B.
,
Aitchison
,
P. B.
,
Burns
,
G. R.
,
Jones
,
D. J.
, and
Rozière
,
J.
,
1997
, “
Proton Insertion and Lithium-Proton Exchange in Spinel Lithium Manganates
,”
Solid State Ion.
,
97
(
1-4
), pp.
269
276
. 10.1016/S0167-2738(97)00065-9
47.
Wu
,
H.
,
Liu
,
W.
,
Ma
,
G.
,
Huang
,
S.
,
Wang
,
F.
,
Ding
,
L.
, and
Zhang
,
Y.
,
2015
, “
Influence of Co-Substitution on Structure and Electrochemical Performances of Li-Rich Spinel LiMn2O4
,”
Integr. Ferroelectr.
,
164
(
1
), pp.
23
32
. 10.1080/10584587.2015.1042827
48.
Hariprasad
,
K.
,
Naresh
,
N.
,
Rao
,
B. N.
,
Venkateswarlu
,
M.
, and
Satyanarayana
,
N.
,
2016
, “
Preparation of LiMn2O4 Nanorods and Nanoparticles for Lithium-Ion Battery Applications
,”
Mater. Today
,
3
(
10
), pp.
4040
4045
. 10.1016/j.matpr.2016.11.070
49.
Rao
,
M. C.
,
Rao
,
M. V. B.
, and
Satyanarayana
,
T.
,
2019
, “
Spectroscopic and Electrochemical Investigations on LiCrxMn2−XO4 Cathodes for Rechargeable Battery Application
,”
Mater. Res. Express
,
6
(
8
), p.
085514
. 10.1088/2053-1591/ab1d1e
50.
Thirunakaran
,
R.
,
Ravikumar
,
R.
,
Gopukumar
,
S.
, and
Sivashanmugam
,
A.
,
2013
, “
Electrochemical Evaluation of Dual-Doped LiMn2O4 Spinels Synthesized Via Co-Precipitation Method as Cathode Material for Lithium Rechargeable Batteries
,”
J. Alloys Compd.
,
556
, pp.
266
273
. 10.1016/j.jallcom.2012.12.053
51.
Thirunakaran
,
R.
,
Ravikumar
,
R.
,
Vijayarani
,
S.
,
Gopukumar
,
S.
, and
Sivashanmugam
,
A.
,
2012
, “
Molybdenum Doped Spinel as Cathode Material for Lithium Rechargeable Cells
,”
Energy Convers. Manag.
,
53
(
1
), pp.
276
281
. 10.1016/j.enconman.2011.08.025
52.
Rougier
,
A.
,
Striebel
,
K.
,
Wen
,
S.
,
Richardson
,
T.
,
Reade
,
R.
, and
Cairns
,
E.
,
1998
, “
Characterization of Pulsed Laser-Deposited LiMn2O4 Thin Films for Rechargeable Lithium Batteries
,”
Appl. Surf. Sci.
,
134
(
1-4
), pp.
107
115
. 10.1016/S0169-4332(98)00234-7
53.
Balaji
,
S.
,
Manichandran
,
T.
, and
Mutharasu
,
D.
,
2012
, “
A Comprehensive Study on Influence of Nd3+ Substitution on Properties of LiMn2O4
,”
Bull. Mater. Sci.
,
35
(
3
), pp.
471
480
. 10.1007/s12034-012-0296-4
54.
Duan
,
L.
,
Zhang
,
X.
,
Yue
,
K.
,
Wu
,
Y.
,
Zhuang
,
J.
, and
,
W.
,
2017
, “
Synthesis and Electrochemical Property of LiMn2O4 Porous Hollow Nanofiber as Cathode for Lithium-Ion Batteries
,”
Nanoscale Res. Lett.
,
12
(
1
), p.
109
. 10.1186/s11671-017-1879-1
55.
Hu
,
W.
,
Zhang
,
Y.
,
Zan
,
L.
, and
Cong
,
H.
,
2020
, “
Mitigation of Voltage Decay in Li-Rich Layered Oxides as Cathode Materials for Lithium-Ion Batteries
,”
Nano Res.
,
13
(
1
), pp.
151
159
. 10.1007/s12274-019-2588-0
56.
Bard
,
A. J.
, and
Faulkner
,
L. R.
,
2001
,
Electrochemical Methods: Fundamentals and Applications
,
John Wiley & Sons
,
NY
.
57.
Kwon
,
N. H.
,
Yin
,
H.
,
Vavrova
,
T.
,
Lim
,
J. H. W.
,
Steiner
,
U.
,
Grobéty
,
B.
, and
Fromm
,
K. M.
,
2017
, “
Nanoparticle Shapes of LiMnPO4, Li+ Diffusion Orientation and Diffusion Coefficients for High Volumetric Energy Li+ Ion Cathodes
,”
J. Power Sources
,
342
, pp.
231
240
. 10.1016/j.jpowsour.2016.11.111
58.
Satyavani
,
T. V. S. L.
,
Ramya Kiran
,
B.
,
Rajesh Kumar
,
V.
,
Srinivas Kumar
,
A.
, and
Naidu
,
S. V.
,
2016
, “
Effect of Particle Size on Dc Conductivity, Activation Energy and Diffusion Coefficient of Lithium Iron Phosphate in Li-Ion Cells
,”
Eng. Sci. Technol. an Int. J.
,
19
(
1
), pp.
40
44
. 10.1016/j.jestch.2015.05.011
59.
Zhang
,
Q.
,
Mei
,
J.
,
Wang
,
X.
,
Guo
,
J.
,
Tang
,
F.
, and
Lu
,
W.
,
2014
, “
Facile Synthesis of Spherical Spinel LiMn2O4 Nanoparticles Via Solution Combustion Synthesis by Controlling Calcinating Temperature
,”
J. Alloys Compd.
,
617
, pp.
326
331
. 10.1016/j.jallcom.2014.08.003
60.
Wu
,
C.
,
Wu
,
F.
,
Chen
,
L.
, and
Huang
,
X.
,
2002
, “
Fabrications and Electrochemical Properties of Fluorine-Modified Spinel LiMn2O4 for Lithium Ion Batteries
,”
Proceedings of International Conference on Solid State Ionics, (Materials and Processes for Energy and Environment)
,
Cairns, Australia
,
July 8–13, 2001
.
61.
Verma
,
P.
,
Maire
,
P.
, and
Novák
,
P.
,
2010
, “
A Review of the Features and Analyses of the Solid Electrolyte Interphase in Li-Ion Batteries
,”
Electrochim. Acta
,
55
(
22
), pp.
6332
6341
. 10.1016/j.electacta.2010.05.072
62.
Tong
,
Q.
,
Yang
,
Y.
,
Shi
,
J.
,
Yan
,
J.
, and
Zheng
,
L.
,
2007
, “
Synthesis and Storage Performance of the Doped LiMn2O4 Spinel
,”
J. Electrochem. Soc.
,
154
(
7
), pp.
A656
A667
. 10.1149/1.2731036
63.
Ragavendran
,
K.
,
Chou
,
H. L.
,
Lu
,
L.
,
Lai
,
M. O.
,
Hwang
,
B. J.
,
Ravi Kumar
,
R.
,
Gopukumar
,
S.
,
Emmanuel
,
B.
,
Vasudevan
,
D.
, and
Sherwood
,
D.
,
2011
, “
Crystal Habits of LiMn2O4 and Their Influence on the Electrochemical Performance
,”
Mater. Sci. Eng. B-Adv.
,
176
(
16
), pp.
1257
1263
. 10.1016/j.mseb.2011.07.005
64.
Arof
,
A.
,
Kufian
,
M.
,
Aziz
,
N.
,
Nor
,
N. M.
, and
Arifin
,
K.
,
2017
, “
Electrochemical Properties of LiMn2O4 Prepared with Tartaric Acid Chelating Agent
,”
Ionics
,
23
(
7
), pp.
1663
1674
. 10.1007/s11581-017-1997-x
65.
Wang
,
Y.
,
Chen
,
W.
,
Luo
,
Q.
,
Xie
,
S.
, and
Chen
,
C. H.
,
2006
, “
Columnar-Grown Porous Films of Lithium Manganese Oxide Spinel (LiMn2O4) Prepared by Ultrasonic Spray Deposition
,”
Appl. Surf. Sci.
,
252
(
23
), pp.
8096
8101
. 10.1016/j.apsusc.2005.10.020
66.
Yoon
,
S.
,
Jung
,
S.-H.
,
Jung
,
K.-N.
,
Woo
,
S.-G.
,
Cho
,
W.
,
Jo
,
Y.-N.
, and
Cho
,
K. Y.
,
2016
, “
Preparation of Nanostructured Ge/GeO2 Composite in Carbon Matrix as an Anode Material for Lithium-Ion Batteries
,”
Electrochim. Acta
,
188
, pp.
120
125
. 10.1016/j.electacta.2015.11.132
67.
Yoon
,
S.
,
Jung
,
K.-N.
,
Yeon
,
S.-H.
,
Jin
,
C. S.
, and
Shin
,
K.-H.
,
2012
, “
Electrochemical Properties of LiNi0.8Co0.15Al0.05O2–Graphene Composite as Cathode Materials for Lithium-Ion Batteries
,”
J. Electroanal. Chem.
,
683
, pp.
88
93
. 10.1016/j.jelechem.2012.08.005
68.
Xu
,
H.
,
Cheng
,
B.
,
Xu
,
E.
,
Xu
,
L.
,
Yang
,
J.
, and
Qian
,
Y.
,
2012
, “
Investigations of High Rate Capability and High Temperature Performance for Nano-Sized Porous LiAlxMn2-XO4 (X = 0, 0.05, 0.1, 0.15) Cathode Material
,”
Int. J. Electrochem. Sci.
,
7
(
12
), pp.
11917
11929
.
69.
Han
,
D.-W.
,
Ryu
,
W.-H.
,
Kim
,
W.-K.
,
Eom
,
J.-Y.
, and
Kwon
,
H.-S.
,
2013
, “
Effects of Li and Cl Codoping on the Electrochemical Performance and Structural Stability of LiMn2O4 Cathode Materials for Hybrid Electric Vehicle Applications
,”
J. Phys. Chem. C
,
117
(
10
), pp.
4913
4919
. 10.1021/jp310011m
You do not currently have access to this content.