Abstract

The reduced graphene oxide modified sodium ion-intercalated manganese oxide (RGO-NaxMnO2) is designed as a supercapacitor electrode material. The layered intercalation compound NaxMnO2 is prepared through a solid-state reaction process. RGO-NaxMnO2 is then formed by the chemical reduction of graphene oxide coated NaxMnO2 through a hydrothermal process. RGO-NaxMnO2 is supported on the substrate of nickel form (NF) and titanium nitride (TiN) to form RGO-NaxMnO2/NF and RGO-NaxMnO2/TiN composite electrodes. NaxMnO2 has a particle aggregate structure with the individual particle size of 1–2 µm. RGO-NaxMnO2 composite shows the densely packed arrangement of particles with the particle aggregate size of 8 µm. RGO modification can well improve the electrical conductivity of RGO-NaxMnO2. The current response is highly enhanced from 0.127 A g−1 for NaxMnO2/NF to 0.372 A g−1 for RGO-NaxMnO2/NF at 2 mV s−1. Furthermore, the TiN substrate with superior electrical conductivity and electrochemical anti-corrosion contributes to improving the electrochemical capacitance and cycle stability of RGO-NaxMnO2. RGO-NaxMnO2/TiN reveals higher specific capacitance (244.2 F g−1 at 2.0 A g−1) and higher cycling capacitance retention (99.7%) after 500 cycles at 2.0 A g−1 than RGO-NaxMnO2/NF (177.1 F g−1, 43.6%). So, RGO-NaxMnO2/TiN exhibits much higher capacitive performance than RGO-NaxMnO2/NF, which presents a potential application for electrochemical energy storage.

References

1.
Xie
,
Y.
,
2019
, “
Electrochemical Performance of Transition Metal-Coordinated Polypyrrole: A Mini Review
,”
Chem. Rec.
,
19
(
12
), pp.
2370
2384
. 10.1002/tcr.201800192
2.
Mu
,
Y.
, and
Xie
,
Y.
,
2019
, “
Theoretical and Experimental Comparison of Electrical Properties of Nickel(II) Coordinated and Protonated Polyaniline
,”
J. Phys. Chem. C
,
123
(
30
), pp.
18232
18239
. 10.1021/acs.jpcc.9b04550
3.
Mu
,
Y.
,
Ruan
,
C.
,
Li
,
P.
,
Xu
,
J.
, and
Xie
,
Y.
,
2020
, “
Enhancement of Electrochemical Performance of Cobalt (II) Coordinated Polyaniline: A Combined Experimental and Theoretical Study
,”
Electrochim. Acta
,
338
, p.
135881
. 10.1016/j.electacta.2020.135881
4.
Li
,
P.
,
Ruan
,
C.
,
Xu
,
J.
, and
Xie
,
Y.
,
2019
, “
High-Performance Asymmetric Supercapacitor Electrode Based on Three-Dimensional ZnMoO4/CoO Nanohybrid on Nickel Foam
,”
Nanoscale
,
11
(
28
), pp.
13639
13649
. 10.1039/C9NR03784E
5.
Xu
,
J.
,
Ruan
,
C.
,
Li
,
P.
, and
Xie
,
Y.
,
2019
, “
Excessive Nitrogen Doping of tin Dioxide Nanorod Array Grown on Activated Carbon Fibers Substrate for Wire-Shaped Microsupercapacitor
,”
Chem. Eng. J.
,
378
, p.
122064
. 10.1016/j.cej.2019.122064
6.
Li
,
P.
,
Ruan
,
C.
,
Xu
,
J.
, and
Xie
,
Y.
,
2019
, “
Enhanced Capacitive Performance of CoO-Modified NiMoO4 Nanohybrid as Advanced Electrodes for Asymmetric Supercapacitor
,”
J. Alloys Compd.
,
791
, pp.
152
165
. 10.1016/j.jallcom.2019.03.274
7.
Chen
,
Y.
, and
Xie
,
Y.
,
2019
, “
Electrochemical Performance of Manganese Coordinated Polyaniline
,”
Adv. Electron. Mater.
,
5
(
12
), p.
1900816
. 10.1002/aelm.201900816
8.
Xie
,
Y.
, and
Yao
,
C.
,
2020
, “
Electrochemical Performance of RuO2-TiO2 Nanotube Hybrid Electrode Material
,”
Mater. Res. Express
,
6
(
12
), p.
125550
. 10.1088/2053-1591/ab69c9
9.
Vargas
,
O.
,
Caballero
,
A.
,
Hernan
,
L.
, and
Morales
,
J. M.
,
2011
, “
Improved Capacitive Properties of Layered Manganese Dioxide Grown as Nanowires
,”
J. Power Sources
,
196
(
6
), pp.
3350
3354
. 10.1016/j.jpowsour.2010.11.097
10.
Fei
,
H. J.
,
Saha
,
N.
,
Kazantseva
,
N.
,
Moucka
,
R.
,
Cheng
,
Q. L.
, and
Saha
,
P.
,
2017
, “
A Highly Flexible Supercapacitor Based on MnO2/RGO Nanosheets and Bacterial Cellulose-Filled Gel Electrolyte
,”
Mater.
,
10
(
11
), p.
1251
. 10.3390/ma10111251
11.
Ghasemi
,
S.
,
Hosseini
,
S. R.
, and
Boore-Talari
,
O.
,
2018
, “
Sonochemical Assisted Synthesis MnO2/RGO Nanohybrid as Effective Electrode Material for Supercapacitor
,”
Ultrason. Sonochem.
,
40
, pp.
675
685
. 10.1016/j.ultsonch.2017.08.013
12.
Xu
,
J.
,
Ruan
,
C.
,
Li
,
P.
,
Mu
,
Y.
, and
Xie
,
Y.
,
2020
, “
S or N-Monodoping and S,N-Codoping Effect on Electronic Structure and Electrochemical Performance of tin Dioxide: Simulation Calculation and Experiment Validation
,”
Electrochim. Acta
,
340
, p.
135950
. 10.1016/j.electacta.2020.135950
13.
Wang
,
Y.
, and
Xie
,
Y.
,
2020
, “
Electroactive FeS2-Modified MoS2 Nanosheet for High-Performance Supercapacitor
,”
J. Alloys Compd.
,
824
, p.
153936
. 10.1016/j.jallcom.2020.153936
14.
Li
,
P.
,
Ruan
,
C.
,
Xu
,
J.
, and
Xie
,
Y.
,
2020
, “
Supercapacitive Performance of CoMoO4 with Oxygen Vacancy Porous Nanosheet
,”
Electrochim. Acta
,
330
, p.
135334
. 10.1016/j.electacta.2019.135334
15.
Xie
,
Y.
, and
Fang
,
X.
,
2014
, “
Electrochemical Flexible Supercapacitor Based on Manganese Dioxide-Titanium Nitride Nanotube Hybrid
,”
Electrochim. Acta
,
120
, pp.
273
283
. 10.1016/j.electacta.2013.12.103
16.
Mai
,
L.
,
Li
,
H.
,
Zhao
,
Y.
,
Xu
,
L.
,
Xu
,
X.
,
Luo
,
Y.
,
Zhang
,
Z.
,
Ke
,
W.
,
Niu
,
C.
, and
Zhang
,
Q.
,
2013
, “
Fast Ionic Diffusion-Enabled Nanoflake Electrode by Spontaneous Electrochemical Pre-Intercalation for High-Performance Supercapacitor
,”
Sci. Rep.
,
3
(
1
), p.
1718
. 10.1038/srep01718
17.
Lu
,
X.
,
Huang
,
Z.
,
Tong
,
Y.
, and
Li
,
G.
,
2016
, “
Asymmetric Supercapacitors With High Energy Density Based on Helical Hierarchical Porous NaxMnO2 and MoO2
,”
Chem. Sci.
,
7
(
1
), pp.
510
517
. 10.1039/C5SC03326H
18.
Sauvage
,
F.
,
Laffont
,
L.
,
Tarascon
,
J. M.
, and
Baudrin
,
E.
,
2007
, “
Study of the Insertion/Deinsertion Mechanism of Sodium Into Na0.44MnO2
,”
Inorg. Chem.
,
46
(
8
), pp.
3289
3294
. 10.1021/ic0700250
19.
Karikalan
,
N.
,
Karuppiah
,
C.
,
Chen
,
S. M.
,
Velmurugan
,
M.
, and
Gnanaprakasam
,
P.
,
2017
, “
Three-Dimensional Fibrous Network of Na0.21MnO2 for Aqueous Sodium-Ion Hybrid Supercapacitors
,”
Chem.-Eur. J.
,
23
(
10
), pp.
2379
2386
. 10.1002/chem.201604878
20.
Billaud
,
J.
,
Clément
,
R. J.
,
Armstrong
,
A. R.
,
Canales-Vázquez
,
J.
,
Rozier
,
P.
,
Grey
,
C. P.
, and
Bruce
,
P. G.
,
2014
, “
β-NaMnO2: A High-Performance Cathode for Sodium-Ion Batteries
,”
J. Am. Chem. Soc.
,
136
(
49
), pp.
17243
17248
. 10.1021/ja509704t
21.
Xie
,
Y.
, and
Zhou
,
Y.
,
2019
, “
Enhanced Capacitive Performance of Activated Carbon Paper Electrode Material
,”
J. Mater. Res.
,
34
(
14
), pp.
2472
2481
. 10.1557/jmr.2019.224
22.
Xie
,
Y.
, and
Zhang
,
Y.
,
2019
, “
Electrochemical Performance of Carbon Paper Supercapacitor Using Sodium Molybdate gel Polymer Electrolyte and Nickel Molybdate Electrode
,”
J. Solid State Electrochem.
,
23
(
6
), pp.
1911
1927
. 10.1007/s10008-019-04260-2
23.
Ruan
,
C.
,
Li
,
P.
,
Xu
,
J.
,
Chen
,
Y.
, and
Xie
,
Y.
,
2019
, “
Activation of Carbon Fiber for Enhancing Electrochemical Performance
,”
Inorg. Chem. Front.
,
6
(
12
), pp.
3583
3597
. 10.1039/C9QI01028A
24.
Lu
,
L.
, and
Xie
,
Y.
,
2019
, “
Phosphomolybdic Acid Cluster Bridging Carbon Dots and Polyaniline Nanofibers for Effective Electrochemical Energy Storage
,”
J. Mater. Sci.
,
54
(
6
), pp.
4842
4858
. 10.1007/s10853-018-03185-x
25.
Ou
,
T. M.
,
Hsu
,
C. T.
, and
Hu
,
C. C.
,
2015
, “
Synthesis and Characterization of Sodium-Doped MnO2 for the Aqueous Asymmetric Supercapacitor Application
,”
J. Electrochem. Soc.
,
162
(
5
), pp.
A5124
A5132
. 10.1149/2.0191505jes
26.
Yang
,
Z.
,
Vinodh
,
R.
,
Balakrishnan
,
B.
,
Rajmohan
,
R.
, and
Kim
,
H.
,
2020
, “
Rational Design of Asymmetric Aqueous Supercapacitor Based on NAXMnO2 and N-Doped Reduced Graphene Oxide
,”
J. Energy Storage
,
28
, p.
101293
. 10.1016/j.est.2020.101293
27.
Ruan
,
C.
,
Li
,
P.
,
Xu
,
J.
, and
Xie
,
Y.
,
2020
, “
Electrochemical Performance of Hybrid Membrane of Polyaniline Layer/Full Carbon Layer Coating on Nickel Foam
,”
Prog. Org. Coat.
,
139
, p.
105455
. 10.1016/j.porgcoat.2019.105455
28.
Xie
,
Y.
, and
Zhan
,
Y.
,
2015
, “
Electrochemical Capacitance of Porous Reduced Graphene Oxide/Nickel Foam
,”
J. Porous Mater.
,
22
(
2
), pp.
403
412
. 10.1007/s10934-015-9909-9
You do not currently have access to this content.