Abstract
The crush safety of lithium-ion batteries (LIBs) has recently become one of the hottest topics as the electric vehicle (EV) market is growing rapidly. In this study, mechanical properties of prismatic lithium-ion batteries under compression loading are investigated. Batteries with different values of state of charge (SOC) under different loading directions are compared. Results show LIB cells with different SOCs under same loading direction exhibit similar response curve profile, however, the load capacities of LIBs can be influenced by SOCs. The stiffness and stress have approximately linear relationship with the SOC values. Based on experimental results, finite element models are established which can predict the mechanical properties of prismatic LIBs. The proposed models can be utilized to evaluate the crush behaviors of LIBs, providing guidance for electric vehicle safety design.