Abstract

Battery thermal management system is critical to prevent the battery pack from such safety issues as overheating, thermal runaway, and spontaneous combustion. Many research works have been done to improve the thermal performance of the thermal management system by reducing the maximum temperature of the battery pack. However, the temperature difference and energy consumption were not discussed in most of the researches. This paper proposed a framework of optimal design of the battery thermal management system using surrogate model and multi-objective optimization methodology. The accuracy of this method was then validated through two cases. The proposed framework aims to find a way to design a battery pack with at least two types of the following objectives: the smallest maximum temperature, smallest temperature deviation, and the lowest energy consumption. The framework can be divided into five steps: the structural design of the battery thermal management system; the fluid–solid coupled heat transfer modeling using computational fluid dynamics (CFD) method; the design of experiments and selection of surrogate models; the multi-objective optimization algorithm based on Pareto optimal solution; and the experimental verification. The optimized designs showed significant improvement by decreasing both the temperature rise and the energy consumption.

References

1.
Fan
,
L.
,
Khodadadi
,
J. M.
, and
Pesaran
,
A. A.
,
2013
, “
A Parametric Study on Thermal Management of an Air-Cooled Lithium-Ion Battery Module for Plug-in Hybrid Electric Vehicles
,”
J. Power Sources
,
238
, pp.
301
312
. 10.1016/j.jpowsour.2013.03.050
2.
Ling
,
Z.
,
Wang
,
F.
,
Fang
,
X.
,
Gao
,
X.
, and
Zhang
,
Z.
,
2015
, “
A Hybrid Thermal Management System for Lithium Ion Batteries Combining Phase Change Materials With Forced-Air Cooling
,”
Appl. Energy
,
148
, pp.
403
409
. 10.1016/j.apenergy.2015.03.080
3.
Rao
,
Z.
,
Qian
,
Z.
,
Kuang
,
Y.
, and
Li
,
Y.
,
2017
, “
Thermal Performance of Liquid Cooling Based Thermal Management System for Cylindrical Lithium-Ion Battery Module With Variable Contact Surface
,”
Appl. Therm. Eng.
,
123
, pp.
1514
1522
. 10.1016/j.applthermaleng.2017.06.059
4.
Zhao
,
J.
,
Rao
,
Z.
, and
Li
,
Y.
,
2015
, “
Thermal Performance of Mini-Channel Liquid Cooled Cylinder Based Battery Thermal Management for Cylindrical Lithium-Ion Power Battery
,”
Energy Convers. Manage.
,
103
, pp.
157
165
. 10.1016/j.enconman.2015.06.056
5.
Shang
,
Z.
,
Qi
,
H.
,
Liu
,
X.
,
Ouyang
,
C.
, and
Wang
,
Y.
,
2019
, “
Structural Optimization of Lithium-Ion Battery for Improving Thermal Performance Based on a Liquid Cooling System
,”
Int. J. Heat Mass Transfer
,
130
, pp.
33
41
. 10.1016/j.ijheatmasstransfer.2018.10.074
6.
Chen
,
K.
,
Song
,
M.
,
Wei
,
W.
, and
Wang
,
S.
,
2018
, “
Structure Optimization of Parallel Air-Cooled Battery Thermal Management System With U-Type Flow for Cooling Efficiency Improvement
,”
Energy
,
145
, pp.
603
613
. 10.1016/j.energy.2017.12.110
7.
Li
,
S.
,
Chen
,
F.
,
Garg
,
A.
,
Peng
,
X.
,
Bao
,
N.
, and
Zhang
,
J.
,
2018
, “
Design Optimization of Battery Pack Enclosure for Electric Vehicle
,”
Struct. Multidiscip. Optim.
,
58
, pp.
1
17
.
8.
Kashkooli
,
A. G.
,
Farhad
,
S.
,
Lee
,
D. U.
,
Feng
,
K.
,
Litster
,
S.
,
Babu
,
S. K.
,
Zhu
,
L.
, and
Chen
,
Z.
,
2016
, “
Multiscale Modeling of Lithium-Ion Battery Electrodes Based on Nano-scale X-ray Computed Tomography
,”
J. Power Sources
,
307
, pp.
496
509
. 10.1016/j.jpowsour.2015.12.134
9.
Wang
,
X.
,
Li
,
M.
,
Liu
,
Y.
,
Sun
,
W.
,
Song
,
X.
, and
Zhang
,
J.
,
2017
, “
Surrogate Based Multidisciplinary Design Optimization of Lithium-Ion Battery Thermal Management System in Electric Vehicles
,”
Struct. Multidiscip. Optim.
,
56
(
6
), pp.
1555
1570
. 10.1007/s00158-017-1733-1
10.
Kim
,
J.
, and
Cho
,
B. H.
,
2013
, “
Screening Process-Based Modeling of the Multi-Cell Battery String in Series and Parallel Connections for High Accuracy State-of-Charge Estimation
,”
Energy
,
57
, pp.
581
599
. 10.1016/j.energy.2013.04.050
11.
Liu
,
C.
,
Wang
,
Y.
, and
Chen
,
Z.
,
2019
, “
Degradation Model and Cycle Life Prediction for Lithium-Ion Battery Used in Hybrid Energy Storage System
,”
Energy
,
166
, pp.
796
806
. 10.1016/j.energy.2018.10.131
12.
Cordoba-Arenas
,
A.
,
Onori
,
S.
, and
Rizzoni
,
G.
,
2015
, “
A Control-Oriented Lithium-Ion Battery Pack Model for Plug-in Hybrid Electric Vehicle Cycle-Life Studies and System Design With Consideration of Health Management
,”
J. Power Sources
,
279
, pp.
791
808
. 10.1016/j.jpowsour.2014.12.048
13.
Gao
,
Y.
,
Jiang
,
J.
,
Zhang
,
C.
,
Zhang
,
W.
,
Ma
,
Z.
, and
Jiang
,
Y.
,
2017
, “
Lithium-Ion Battery Aging Mechanisms and Life Model Under Different Charging Stresses
,”
J. Power Sources
,
356
, pp.
103
114
. 10.1016/j.jpowsour.2017.04.084
14.
Lai
,
Y.
,
Du
,
S.
,
Ai
,
L.
,
Ai
,
L.
,
Cheng
,
Y.
,
Tang
,
Y.
, and
Jia
,
M.
,
2015
, “
Insight Into Heat Generation of Lithium Ion Batteries Based on the Electrochemical-Thermal Model at High Discharge Rates
,”
Int. J. Hydrogen Energy
,
40
(
38
), pp.
13039
13049
. 10.1016/j.ijhydene.2015.07.079
15.
Tanim
,
T. R.
,
Shirk
,
M. G.
,
Bewley
,
R. L.
,
Dufek
,
E. J.
, and
Liaw
,
B. Y.
,
2018
, “
Fast Charge Implications: Pack and Cell Analysis and Comparison
,”
J. Power Sources
,
381
, pp.
56
65
. 10.1016/j.jpowsour.2018.01.091
16.
Zhang
,
C.
,
Jiang
,
J.
,
Gao
,
Y.
,
Zhang
,
W.
,
Liu
,
Q.
, and
Hu
,
X.
,
2017
, “
Charging Optimization in Lithium-Ion Batteries Based on Temperature Rise and Charge Time
,”
Appl. Energy
,
194
, pp.
569
577
. 10.1016/j.apenergy.2016.10.059
17.
Mandli
,
A. R.
,
Ramachandran
,
S.
,
Khandelwal
,
A. K.
,
Kim
,
K. Y.
, and
Hariharan
,
K. S.
,
2018
, “
Fast Computational Framework for Optimal Life Management of Lithium Ion Batteries
,”
Int. J. Energy Res.
,
42
(
5
), pp.
1973
1982
. 10.1002/er.3996
18.
Liu
,
K.
,
Li
,
K.
,
Ma
,
H.
,
Zhang
,
J.
, and
Peng
,
Q.
,
2018
, “
Multi-Objective Optimization of Charging Patterns for Lithium-Ion Battery Management
,”
Energy Convers. Manage.
,
159
, pp.
151
162
. 10.1016/j.enconman.2017.12.092
19.
Abdollahi
,
A.
,
Han
,
X.
,
Raghunathan
,
N.
,
Pattipati
,
B.
,
Balasingam
,
B.
,
Pattipati
,
K. R.
,
Bar-shalom
,
Y.
, and
Card
,
B.
,
2017
, “
Optimal Charging for General Equivalent Electrical Battery Model, and Battery Life Management
,”
J. Energy Storage
,
9
, pp.
47
58
. 10.1016/j.est.2016.11.002
20.
Zhao
,
C.
,
Cao
,
W.
,
Dong
,
T.
, and
Jiang
,
F.
,
2018
, “
Thermal Behavior Study of Discharging/Charging Cylindrical Lithium-Ion Battery Module Cooled by Channeled Liquid Flow
,”
Int. J. Heat Mass Transfer
,
120
, pp.
751
762
. 10.1016/j.ijheatmasstransfer.2017.12.083
21.
Liu
,
Y.
, and
Zhang
,
J.
,
2020
, “
Self-Adapting J-Type Air-Based Battery Thermal Management System via Model Predictive Control
,”
Appl. Energy
,
263
, pp.
1
11
.
22.
Xia
,
G.
,
Cao
,
L.
, and
Bi
,
G.
,
2017
, “
A Review on Battery Thermal Management in Electric Vehicle Application
,”
J. Power Sources
,
367
, pp.
90
105
. 10.1016/j.jpowsour.2017.09.046
23.
Zhao
,
Y.
,
Zou
,
B.
,
Li
,
C.
, and
Ding
,
Y.
,
2019
, “
Active Cooling-Based Battery Thermal Management Using Composite Phase Change Materials
,”
Energy Procedia
,
158
, pp.
4933
4940
. 10.1016/j.egypro.2019.01.697
24.
Kim
,
J.
,
Oh
,
J.
, and
Lee
,
H.
,
2019
, “
Review on Battery Thermal Management System for Electric Vehicles
,”
Appl. Therm. Eng.
,
149
, pp.
192
212
. 10.1016/j.applthermaleng.2018.12.020
25.
Chen
,
S.
,
Peng
,
X.
,
Bao
,
N.
, and
Garg
,
A.
,
2019
, “
A Comprehensive Analysis and Optimization Process for an Integrated Liquid Cooling Plate for a Prismatic Lithium-Ion Battery Module
,”
Appl. Therm. Eng.
,
156
, pp.
324
339
. 10.1016/j.applthermaleng.2019.04.089
26.
Peng
,
X.
,
Ma
,
C.
,
Garg
,
A.
,
Bao
,
N.
, and
Liao
,
X.
,
2019
, “
Thermal Performance Investigation of an Air-Cooled Lithium-Ion Battery Pack Considering the Inconsistency of Battery Cells
,”
Appl. Therm. Eng.
,
153
, pp.
596
603
. 10.1016/j.applthermaleng.2019.03.042
27.
Lan
,
H.
,
Yang
,
L.
,
Zheng
,
F.
,
Zong
,
C.
,
Wu
,
S.
, and
Song
,
X.
,
2020
, “
Analysis and Optimization of High Temperature Proton Exchange Membrane (HT-PEM) Fuel Cell Based on Surrogate Model
,”
Int. J. Hydrogen Energy
,
45
(
22
), pp.
12501
12513
. 10.1016/j.ijhydene.2020.02.150
28.
Peng
,
X.
,
Chen
,
S.
,
Garg
,
A.
,
Bao
,
N.
, and
Panda
,
B.
,
2019
, “
A Review of the Estimation and Heating Methods for Lithium-Ion Batteries Pack at the Cold Environment
,”
Energy Sci. Eng.
,
7
(
3
), pp.
645
662
. 10.1002/ese3.279
29.
An
,
Z.
,
Shah
,
K.
,
Jia
,
L.
, and
Ma
,
Y.
,
2019
, “
A Parametric Study for Optimization of Minichannel Based Battery Thermal Management System
,”
Appl. Therm. Eng.
,
154
, pp.
593
601
. 10.1016/j.applthermaleng.2019.02.088
30.
Li
,
W.
,
Xiao
,
M.
,
Peng
,
X.
,
Garg
,
A.
, and
Gao
,
L.
,
2019
, “
A Surrogate Thermal Modeling and Parametric Optimization of Battery Pack With Air Cooling for EVs
,”
Appl. Therm. Eng.
,
147
, pp.
90
100
. 10.1016/j.applthermaleng.2018.10.060
31.
Kashyap
,
N.
,
Kumari
,
C.
, and
Chhikara
,
R.
,
2020
, “
Multi-Objective Optimization Using NSGA II for Service Composition in IoT
,”
Procedia Comput. Sci.
,
167
, pp.
1928
1933
. 10.1016/j.procs.2020.03.214
32.
Chen
,
S.
,
Wan
,
C.
, and
Wang
,
Y.
,
1996
, “
Thermal Analysis of Lithium-Ion Batteries
,”
J. Power Sources
,
140
(
1
), pp.
111
124
. 10.1016/j.jpowsour.2004.05.064
33.
Wu
,
W.
,
Wang
,
S.
,
Wu
,
W.
,
Chen
,
K.
,
Hong
,
S.
, and
Lai
,
Y.
,
2019
, “
A Critical Review of Battery Thermal Performance and Liquid Based Battery Thermal Management
,”
Energy Convers. Manage.
,
182
, pp.
262
281
. 10.1016/j.enconman.2018.12.051
34.
Chen
,
S.
,
Peng
,
X.
,
Bao
,
N.
, and
Garg
,
A.
,
2019
, “
A Comprehensive Analysis and Optimization Process for an Integrated Liquid Cooling Plate for a Prismatic Lithium-Ion Battery Module
,”
Appl. Therm. Eng.
,
156
, pp.
324
339
. 10.1016/j.applthermaleng.2019.04.089
You do not currently have access to this content.