Abstract
Battery thermal management system is critical to prevent the battery pack from such safety issues as overheating, thermal runaway, and spontaneous combustion. Many research works have been done to improve the thermal performance of the thermal management system by reducing the maximum temperature of the battery pack. However, the temperature difference and energy consumption were not discussed in most of the researches. This paper proposed a framework of optimal design of the battery thermal management system using surrogate model and multi-objective optimization methodology. The accuracy of this method was then validated through two cases. The proposed framework aims to find a way to design a battery pack with at least two types of the following objectives: the smallest maximum temperature, smallest temperature deviation, and the lowest energy consumption. The framework can be divided into five steps: the structural design of the battery thermal management system; the fluid–solid coupled heat transfer modeling using computational fluid dynamics (CFD) method; the design of experiments and selection of surrogate models; the multi-objective optimization algorithm based on Pareto optimal solution; and the experimental verification. The optimized designs showed significant improvement by decreasing both the temperature rise and the energy consumption.