Abstract

To construct novel multicomponent transition metal oxides with the synergistic effect is always the most important strategy to improve the electrochemical performance of supercapacitor electrode materials. Here, a new type of parallelogram-like NH4CoPO4 · H2O/Ni3(PO4)2 · 8H2O/MnO2 (NNM) composites were successfully prepared by a simple hydrothermal method, and the addition amount of MnO2 was adjusted in detail. The morphology, structure, composition, particle size, and distribution of the electrode were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), Raman spectrum, and laser particle size analyzer. The results showed that when MnO2 was added at 9.7 wt%, the resulting NNM-9.7 composite exhibited a parallelogram-like morphology with an average length, width. and thickness of 5, 3, and 0.2 µm, respectively. The results of cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectroscopy (EIS) show that the NNM-9.7 electrode has large specific surface area, good conductivity, and abundant porosity, which makes it to have high-specific capacity (1180 F g−1, 1 A g−1) and excellent rate retention (980 F g−1, 10 A g−1) when compared with other electrodes, which is better than most reported electrodes of nickel–cobalt oxides/hydroxides. These results indicate that the novel NNM-9.7 composite with parallelogram-like shape and its synthesis method may provide a feasible solution for supercapacitors' material issues.

References

1.
Gao
,
H.
,
Liao
,
S.
,
Zhang
,
Y.
,
Wang
,
L.
, and
Zhang
,
L.
,
2017
, “
Methanol Tolerant Core-Shell RuFeSe@Pt/C Catalyst for Oxygen Reduction Reaction
,”
Int. J. Hydrogen Energy
,
42
(
32
), pp.
20658
20668
. 10.1016/j.ijhydene.2017.07.004
2.
Li
,
X.
,
Xia
,
T.
,
Dong
,
H.
,
Shang
,
Q.
, and
Song
,
Y.
,
2013
, “
Preparation of Nickel Modified Activated Carbon/AB5 Alloy Composite and its Electrochemical Hydrogen Absorbing Properties
,”
Int. J. Hydrogen Energy
,
38
(
21
), pp.
8903
8908
. 10.1016/j.ijhydene.2013.05.039
3.
Wang
,
L.
,
Gao
,
H.
,
Fang
,
H.
,
Wang
,
S.
, and
Sun
,
J.
,
2016
, “
Effect of Methanol on the Electrochemical Behaviour and Surface Conductivity of Niobium Carbide-Modified Stainless Steel for DMFC Bipolar Plate
,”
Int. J. Hydrogen Energy
,
41
(
33
), pp.
14864
14871
. 10.1016/j.ijhydene.2016.07.037
4.
Cao
,
Y.
,
Zhang
,
A.-Q.
,
Zhang
,
H.
,
Ding
,
G.-Q.
, and
Zhang
,
L.-S.
,
2020
, “
A Facile Route to Achieve Fe2O3 Hollow Sphere Anchored on Carbon Nanotube for Application in Lithium-Ion Battery
,”
Inorg. Chem. Commun.
,
111
, p.
107633
. 10.1016/j.inoche.2019.107633
5.
Fang
,
H.
,
Chen
,
G.
,
Wang
,
L.
,
Yan
,
J.
,
Zhang
,
L.
,
Gao
,
K.
,
Zhang
,
Y.
, and
Wang
,
L.
,
2018
, “
Facile Fabrication of Hierarchical Film Composed of Co(OH)2@Carbon Nanotube Core/Sheath Nanocables and its Capacitive Performance
,”
RSC Adv.
,
8
(
67
), pp.
38550
38555
. 10.1039/C8RA07031H
6.
Zhang
,
Y.
,
Feng
,
H.
,
Wu
,
X.
,
Wang
,
L.
,
Zhang
,
A.
,
Xia
,
T.
,
Dong
,
H.
,
Li
,
X.
, and
Zhang
,
L.
,
2009
, “
Progress of Electrochemical Capacitor Electrode Materials: A Review
,”
Int. J. Hydrogen Energy
,
34
(
11
), pp.
4889
4899
. 10.1016/j.ijhydene.2009.04.005
7.
Inagaki
,
M.
,
Konno
,
H.
, and
Tanaike
,
O.
,
2010
, “
Carbon Materials for Electrochemical Capacitors
,”
J. Power Sources
,
195
(
24
), pp.
7880
7903
. 10.1016/j.jpowsour.2010.06.036
8.
Pusawale
,
S. N.
,
Deshmukh
,
P. R.
,
Gunjakar
,
J. L.
, and
Lokhande
,
C. D.
,
2013
, “
SnO2–RuO2 Composite Films by Chemical Deposition for Supercapacitor Application
,”
Mater. Chem. Phys.
,
139
(
2–3
), pp.
416
422
. 10.1016/j.matchemphys.2012.12.059
9.
Zhang
,
Y.
,
Wang
,
L.
,
Zhang
,
A.
,
Song
,
Y.
,
Li
,
X.
,
Wu
,
X.
,
Du
,
P.
, and
Yan
,
L.
,
2011
, “
Impact of Electrolyte Additives (Alkali Metal Salts) on the Capacitive Behavior of NiO-Based Capacitors
,”
Korean J. Chem. Eng.
,
28
(
2
), pp.
608
612
. 10.1007/s11814-010-0396-z
10.
Liu
,
W.
,
Li
,
X.
,
Zhu
,
M.
, and
He
,
X.
,
2015
, “
High-Performance all-Solid State Asymmetric Supercapacitor Based on Co3O4 Nanowires and Carbon Aerogel
,”
J. Power Sources
,
282
, pp.
179
186
. 10.1016/j.jpowsour.2015.02.047
11.
Zhang
,
Y.
,
Li
,
G.-Y.
,
Lv
,
Y.
,
Wang
,
L.-Z.
,
Zhang
,
A.-Q.
,
Song
,
Y.-H.
, and
Huang
,
B.-L.
,
2011
, “
Electrochemical Investigation of MnO2 Electrode Material for Supercapacitors
,”
Int. J. Hydrogen Energy
,
36
(
18
), pp.
11760
11766
. 10.1016/j.ijhydene.2011.06.020
12.
Fang
,
H.
,
Meng
,
F.
,
Yan
,
J.
,
Chen
,
G.-Y.
,
Zhang
,
L.
,
Wu
,
S.
,
Zhang
,
S.
,
Wang
,
L.
, and
Zhang
,
Y.
,
2019
, “
Fe3O4 Hard Templating to Assemble Highly Wrinkled Graphene Sheets Into Hierarchical Porous Film for Compact Capacitive Energy Storage
,”
RSC Adv.
,
9
(
35
), pp.
20107
20112
. 10.1039/C9RA02132A
13.
Qu
,
Z.
,
Shi
,
M.
,
Wu
,
H.
,
Liu
,
Y.
,
Jiang
,
J.
, and
Yan
,
C.
,
2019
, “
An Efficient Binder-Free Electrode With Multiple Carbonized Channels Wrapped by NiCo2O4 Nanosheets for High-Performance Capacitive Energy Storage
,”
J. Power Sources
,
410–411
, pp.
179
187
. 10.1016/j.jpowsour.2018.11.018
14.
Zhang
,
Y.
,
Gao
,
H.-L.
,
Jia
,
X.-D.
,
Wang
,
S.-W.
,
Yan
,
J.
,
Luo
,
H.-W.
,
Gao
,
K.-Z.
,
Fang
,
H.
,
Zhang
,
A.-Q.
, and
Wang
,
L.-Z.
,
2018
, “
NiMoO4 Nanorods Supported on Nickel Foam for High-Performance Supercapacitor Electrode Materials
,”
J. Renewable Sustainable Energy
,
10
(
5
), p.
054101–054110
.
15.
Zhang
,
Q.
,
Sun
,
B.
,
Sun
,
J.
,
Wang
,
N.
, and
Hu
,
W.
,
2019
, “
N-Doped Mesoporous Carbon Derived From Electrodeposited Polypyrrole on Porous Carbon Cloth for High-Performance Flexibility Supercapacitors
,”
J. Electroanal. Chem.
,
839
, pp.
39
47
. 10.1016/j.jelechem.2019.03.018
16.
Zhou
,
H.
,
Zhi
,
X.
,
Zhang
,
W.
, and
Zhai
,
H.-J.
,
2019
, “
A Simple Strategy to Prepare Polyaniline Nanorods by Surfactant-Assisted Electropolymerization for Remarkably Improved Supercapacitive Performances
,”
Org. Electron.
,
69
, pp.
98
105
. 10.1016/j.orgel.2019.03.027
17.
Liu
,
L.
,
Zhang
,
H.
,
Fang
,
L.
,
Mu
,
Y.
, and
Wang
,
Y.
,
2016
, “
Facile Preparation of Novel Dandelion-Like Fe-Doped NiCo2O4 Microspheres@Nanomeshes for Excellent Capacitive Property in Asymmetric Supercapacitors
,”
J. Power Sources
,
327
, pp.
135
144
. 10.1016/j.jpowsour.2016.07.054
18.
Rahmanabadi
,
F.
,
Sangpour
,
P.
, and
Sabouri-Dodaran
,
A. A.
,
2019
, “
Electrochemical Deposition of MnO2/RGO Nanocomposite Thin Film: Enhanced Supercapacitor Behavior
,”
J. Electron. Mater.
,
48
(
9
), pp.
5813
5820
. 10.1007/s11664-019-07361-w
19.
Fang
,
H.
,
Zhang
,
L. S.
,
Xing
,
Y. L.
,
Zhang
,
S. C.
, and
Wu
,
S. D.
,
2018
, “
Nanostructured Manganese Oxide Films for High Performance Supercapacitors
,”
Int. J. Electrochem. Sci.
,
13
(
9
), pp.
8736
8744
. 10.20964/2018.09.21
20.
Li
,
Y.
,
Zhang
,
S.
,
Ma
,
M.
,
Mu
,
X.
,
Zhang
,
Y.
,
Du
,
J.
,
Hu
,
Q.
,
Huang
,
B.
,
Hua
,
X.
,
Liu
,
G.
,
Xie
,
E.
, and
Zhang
,
Z.
,
2019
, “
Manganese-Doped Nickel Molybdate Nanostructures for High-Performance Asymmetric Supercapacitors
,”
Chem. Eng. J.
,
372
, pp.
452
461
. 10.1016/j.cej.2019.04.167
21.
Guo
,
X. L.
,
Liu
,
X. Y.
,
Hao
,
X. D.
,
Zhu
,
S. J.
,
Dong
,
F.
,
Wen
,
Z. Q.
, and
Zhang
,
Y. X.
,
2016
, “
Nickel-Manganese Layered Double Hydroxide Nanosheets Supported on Nickel Foam for High-Performance Supercapacitor Electrode Materials
,”
Electrochim. Acta
,
194
, pp.
179
186
. 10.1016/j.electacta.2016.02.080
22.
Zhao
,
Y.
,
Chen
,
Z.
,
Xiong
,
D.-B.
,
Qiao
,
Y.
,
Tang
,
Y.
, and
Gao
,
F.
,
2016
, “
Hybridized Phosphate With Ultrathin Nanoslices and Single Crystal Microplatelets for High Performance Supercapacitors
,”
Sci. Rep.
,
6
(
1
), p.
17613
. 10.1038/srep17613
23.
Joo
,
H.-H.
,
Gopi
,
C. V. V. M.
,
Vinodh
,
R.
,
Kim
,
H.-J.
,
Sambasivam
,
S.
, and
Obaidat
,
I. M.
,
2019
, “
Facile Synthesis of Flexible and Binder-Free Dandelion Flower-Like CuNiO2 Nanostructures as Advanced Electrode Material for High-Performance Supercapacitors
,”
J. Energy Storage
,
26
, p.
100914
. 10.1016/j.est.2019.100914
24.
Zang
,
J.
,
Tian
,
P.
,
Yang
,
G.
,
Jia
,
S.
,
Zhou
,
S.
,
Xu
,
H.
, and
Wang
,
Y.
,
2019
, “
A Facile Preparation of Pomegranate-Like Porous Carbon by Carbonization and Activation of Phenolic Resin Prepared Via Hydrothermal Synthesis in KOH Solution for High Performance Supercapacitor Electrodes
,”
Adv. Powder Technol.
,
30
(
12
), pp.
2900
2907
. 10.1016/j.apt.2019.08.036
25.
Pang
,
H.
,
Yan
,
Z.
,
Wang
,
W.
,
Chen
,
J.
,
Zhang
,
J.
, and
Zheng
,
H.
,
2012
, “
Facile Fabrication of NH4CoPO4 · H2O Nano/Microstructures and Their Primarily Application as Electrochemical Supercapacitor
,”
Nanoscale
,
4
(
19
), pp.
5946
5953
. 10.1039/c2nr31208e
26.
Li
,
N.
,
Xu
,
Z.
,
Liu
,
Y.
, and
Hu
,
Z.
,
2019
, “
Hollow Amorphous Microspheres of Nickel Phosphate: Synthesis Using Adenosine 5′-Triphosphate Disodium Salt as a New Organic Phosphorus Source and Their Application as Electrode Materials in Supercapacitors
,”
J. Power Sources
,
426
, pp.
1
10
. 10.1016/j.jpowsour.2019.04.016
27.
Li
,
Q.
,
Li
,
Y. H.
,
Peng
,
H. R.
,
Cui
,
X.
,
Zhou
,
M.
,
Feng
,
K. Y.
, and
Xiao
,
P.
,
2016
, “
Layered NH4CoxNi1−xPO4 · H2O (0 ≦ x ≦ 1) Nanostructures Finely Tuned by Co/Ni Molar Ratios for Asymmetric Supercapacitor Electrodes
,”
J. Mater. Sci.
,
51
(
22
), pp.
9946
9957
. 10.1007/s10853-016-0151-x
28.
Zhao
,
Y.
, and
Wang
,
C.-A.
,
2016
, “
Nano-Network MnO2/Polyaniline Composites with Enhanced Electrochemical Properties for Supercapacitors
,”
Mater. Des.
,
97
, pp.
512
518
. 10.1016/j.matdes.2016.02.120
29.
Zhang
,
Y.
,
Yao
,
Q.-Q.
,
Gao
,
H.-L.
,
Zhang
,
L.-S.
,
Wang
,
L.-Z.
,
Zhang
,
A.-Q.
,
Song
,
Y.-H.
, and
Wang
,
L.-X.
,
2015
, “
Synthesis and Electrochemical Performance of MnO2/BC Composite as Active Materials for Supercapacitors
,”
J. Anal. Appl. Pyrolysis
,
111
, pp.
233
237
. 10.1016/j.jaap.2014.11.002
30.
Aboussatar
,
M.
,
Mbarek
,
A.
,
Naili
,
H.
,
El-Ghozzi
,
M.
,
Chadeyron
,
G.
,
Avignant
,
D.
, and
Zambon
,
D.
,
2017
, “
Phase Equilibria in the NaF-CdO-NaPO3 System at 873 K and Crystal Structure and Physico-Chemical Characterizations of the new Na2CdPO4F Fluorophosphate
,”
J. Solid State Chem.
,
248
, pp.
75
86
. 10.1016/j.jssc.2016.09.014
31.
Zhang
,
S.
,
Gao
,
H.
, and
Zhou
,
J.
,
2018
, “
Reduced Graphene Oxide-Modified Ni-Co Phosphate Nanosheet Self-Assembled Microplates as High-Performance Electrode Materials for Supercapacitors
,”
J. Alloys Compd.
,
746
, pp.
549
556
. 10.1016/j.jallcom.2018.02.008
32.
Gerasimova
,
Y. V.
,
Oreshonkov
,
A. S.
,
Laptash
,
N. M.
,
Vtyurin
,
A. N.
,
Krylov
,
A. S.
,
Shestakov
,
N. P.
,
Ershov
,
A. A.
, and
Kocharova
,
A. G.
,
2017
, “
Nature of Phase Transitions in Ammonium Oxofluorovanadates, a Vibrational Spectroscopy Study of (NH4)3VO2F4 and (NH4)3VOF5
,”
Spectrochim. Acta, Part A
,
176
, pp.
106
113
. 10.1016/j.saa.2017.01.004
33.
Nithyadharseni
,
P.
,
Reddy
,
M. V.
,
Fanny
,
H.
,
Adams
,
S.
, and
Chowdari
,
B. V. R.
,
2015
, “
Facile One Pot Synthesis and Li-Cycling Properties of MnO2
,”
RSC Adv.
,
5
(
74
), pp.
60552
60561
. 10.1039/C5RA09278G
34.
Peng
,
X.
,
Chai
,
H.
,
Cao
,
Y.
,
Wang
,
Y.
,
Dong
,
H.
,
Jia
,
D.
, and
Zhou
,
W.
,
2018
, “
Facile Synthesis of Cost-Effective Ni3(PO4)2 · 8H2O Microstructures as a Supercapattery Electrode Material
,”
Mater. Today Energy
,
7
, pp.
129
135
. 10.1016/j.mtener.2017.12.004
35.
Hu
,
Q.
,
Tang
,
M.
,
He
,
M.
,
Jiang
,
N.
,
Xu
,
C.
,
Lin
,
D.
, and
Zheng
,
Q.
,
2020
, “
Core-Shell MnO2@CoS Nanosheets with Oxygen Vacancies for High-Performance Supercapattery
,”
J. Power Sources
,
446
, p.
227335
. 10.1016/j.jpowsour.2019.227335
36.
Kang
,
L.
,
Huang
,
C.
,
Zhang
,
J.
,
Zhang
,
M.
,
Zhang
,
N.
,
He
,
Y.
,
Luo
,
C.
,
Wang
,
C.
,
Zhou
,
X.
, and
Wu
,
X.
,
2019
, “
A New Strategy for Synthesis of Hierarchical MnO2–Mn3O4 Nanocomposite via Reduction-Induced Exfoliation of MnO2 Nanowires and its Application in High-Performance Asymmetric Supercapacitor
,”
Composites, Part B
,
178
, p.
107501
. 10.1016/j.compositesb.2019.107501
37.
Ping
,
Y.
,
Liu
,
Z.
,
Li
,
J.
,
Han
,
J.
,
Yang
,
Y.
,
Xiong
,
B.
,
Fang
,
P.
, and
He
,
C.
,
2019
, “
Boosting the Performance of Supercapacitors Based Hierarchically Porous Carbon From Natural Juncus Effuses by Incorporation of MnO2
,”
J. Alloys Compd.
,
805
, pp.
822
830
. 10.1016/j.jallcom.2019.07.125
38.
Li
,
W.
,
Yang
,
F.
,
Hu
,
Z.
, and
Liu
,
Y.
,
2018
, “
Template Synthesis of C@NiCo2O4 Hollow Microsphere as Electrode Material for Supercapacitor
,”
J. Alloys Compd.
,
749
, pp.
305
312
. 10.1016/j.jallcom.2018.03.046
39.
Zhang
,
Y.
,
Yao
,
Q.-Q.
,
Gao
,
H.-L.
,
Wang
,
L.-X.
,
Wang
,
L.-Z.
,
Zhang
,
A.-Q.
,
Song
,
Y.-H.
, and
Xia
,
T.-C.
,
2014
, “
Synthesis and Electrochemical Properties of Hollow-Porous MnO2-Graphene Micro-Nano Spheres for Supercapacitor Applications
,”
Powder Technol.
,
267
, pp.
268
272
. 10.1016/j.powtec.2014.07.040
40.
Su
,
L.
,
Gao
,
L.
,
Du
,
Q.
,
Hou
,
L.
,
Ma
,
Z.
,
Qin
,
X.
, and
Shao
,
G.
,
2018
, “
Construction of NiCo2O4@MnO2 Nanosheet Arrays for High-Performance Supercapacitor: Highly Cross-Linked Porous Heterostructure and Worthy Electrochemical Double-Layer Capacitance Contribution
,”
J. Alloys Compd.
,
749
, pp.
900
908
. 10.1016/j.jallcom.2018.03.353
41.
Yang
,
C.-M.
, and
Kim
,
B.-H.
,
2018
, “
Highly Conductive Pitch-Based Carbon Nanofiber/MnO2 Composites for High-Capacitance Supercapacitors
,”
J. Alloys Compd.
,
749
, pp.
441
447
. 10.1016/j.jallcom.2018.03.305
42.
Ji
,
Z.
,
Li
,
N.
,
Xie
,
M.
,
Shen
,
X.
,
Dai
,
W.
,
Liu
,
K.
,
Xu
,
K.
, and
Zhu
,
G.
,
2020
, “
High-Performance Hybrid Supercapacitor Realized by Nitrogen-Doped Carbon Dots Modified Cobalt Sulfide and Reduced Graphene Oxide
,”
Electrochim. Acta
,
334
, p.
135632
. 10.1016/j.electacta.2020.135632
43.
Wan
,
L.
,
Chen
,
D.
,
Liu
,
J.
,
Zhang
,
Y.
,
Chen
,
J.
,
Du
,
C.
, and
Xie
,
M.
,
2020
, “
Facile Preparation of Porous Carbons Derived From Orange Peel via Basic Copper Carbonate Activation for Supercapacitors
,”
J. Alloys Compd.
,
823
, p.
153747
. 10.1016/j.jallcom.2020.153747
44.
Zhang
,
T.
,
Yue
,
H.
,
Gao
,
X.
,
Yao
,
F.
,
Chen
,
H.
,
Lu
,
X.
,
Wang
,
Y.
, and
Guo
,
X.
,
2019
, “
Polyaniline Nanowire Arrays on Three-Dimensional Hollow Graphene Balls for High-Performance Symmetric Supercapacitor
,”
J. Electroanal. Chem.
,
855
, p.
113574
. 10.1016/j.jelechem.2019.113574
45.
Zhuo
,
H.
,
Hu
,
Y.
,
Chen
,
Z.
, and
Zhong
,
L.
,
2019
, “
Cellulose Carbon Aerogel/PPy Composites for High-Performance Supercapacitor
,”
Carbohydr. Polym.
,
215
, pp.
322
329
. 10.1016/j.carbpol.2019.03.101
46.
Ma
,
Y.
,
Hou
,
C.
,
Zhang
,
H.
,
Zhang
,
Q.
,
Liu
,
H.
,
Wu
,
S.
, and
Guo
,
Z.
,
2019
, “
Three-Dimensional Core-Shell Fe3O4/Polyaniline Coaxial Heterogeneous Nanonets: Preparation and High Performance Supercapacitor Electrodes
,”
Electrochim. Acta
,
315
, pp.
114
123
. 10.1016/j.electacta.2019.05.073
47.
Li
,
B.
,
Luo
,
B.
,
Zhao
,
J.
,
Pan
,
Y.
,
Zhou
,
H.
,
Xiao
,
Y.
,
Lei
,
S.
, and
Cheng
,
B.
,
2019
, “
High Electrical Conductivity-Induced Enhancement Effect of Electrochemical Performance in Mesoporous NiCo2S4 Nanorod-Based Supercapacitor
,”
J. Energy Storage
,
26
, p.
100955
. 10.1016/j.est.2019.100955
48.
Bhagwan
,
J.
,
Khaja Hussain
,
S.
, and
Yu
,
J. S.
,
2020
, “
Aqueous Asymmetric Supercapacitors Based on ZnCo2O4 Nanoparticles via Facile Combustion Method
,”
J. Alloys Compd.
,
815
, p.
152456
. 10.1016/j.jallcom.2019.152456
49.
Wang
,
Y.
,
Li
,
W.
,
Zhang
,
L.
,
Zhang
,
X.
,
Tan
,
B.
,
Hao
,
J.
,
Jian
,
Z.
,
Wang
,
X.
,
Hu
,
Q.
, and
Lu
,
X.
,
2020
, “
Amorphous Cobalt Hydrogen Phosphate Nanosheets with Remarkable Electrochemical Performances as Advanced Electrode for Supercapacitors
,”
J. Power Sources
,
449
, pp.
227487
.
50.
Raghavendra
,
K. V. G.
,
Gopi
,
C. V. V. M.
,
Vinodh
,
R.
,
Rao
,
S. S.
,
Obaidat
,
I. M.
, and
Kim
,
H.-J.
,
2020
, “
Facile Synthesis of Nanoparticles Anchored on Honeycomb-Like MnCo2S4 Nanostructures as a Binder-Free Electroactive Material for Supercapacitors
,”
J. Energy Storage
,
27
, p.
101159
. 10.1016/j.est.2019.101159
51.
Zhang
,
Y.
,
Chang
,
C.-R.
,
Jia
,
X.-D.
,
Huo
,
Q.-Y.
,
Gao
,
H.-L.
,
Yan
,
J.
,
Zhang
,
A.-Q.
,
Ru
,
Y.
,
Mei
,
H.-X.
,
Gao
,
K.-Z.
, and
Wang
,
L.-Z.
,
2020
, “
Morphology-Dependent NiMoO4/Carbon Composites for High Performance Supercapacitors
,”
Inorg. Chem. Commun.
,
111
, p.
107631
. 10.1016/j.inoche.2019.107631
52.
Zhao
,
Z.
,
Shen
,
T.
,
Liu
,
Z.
,
Zhong
,
Q.
, and
Qin
,
Y.
,
2020
, “
Facile Fabrication of Binder-Free Reduced Graphene Oxide/MnO2/Ni Foam Hybrid Electrode for High-Performance Supercapacitors
,”
J. Alloys Compd.
,
812
, p.
152124
. 10.1016/j.jallcom.2019.152124
53.
Zheng
,
Y.
,
Tian
,
Y.
,
Liu
,
S.
,
Tan
,
X.
,
Wang
,
S.
,
Guo
,
Q.
,
Luo
,
J.
, and
Li
,
Z.
,
2019
, “
One-Step Microwave Synthesis of NiO/NiS@CNT Nanocomposites for High-Cycling-Stability Supercapacitors
,”
J. Alloys Compd.
,
806
, pp.
170
179
. 10.1016/j.jallcom.2019.07.213
54.
Zhang
,
Y.
,
Chang
,
C.-R.
,
Jia
,
X.-D.
,
Cao
,
Y.
,
Yan
,
J.
,
Luo
,
H.-W.
,
Gao
,
H.-L.
,
Ru
,
Y.
,
Mei
,
H.-X.
,
Zhang
,
A.-Q.
,
Gao
,
K.-Z.
, and
Wang
,
L.-Z.
,
2020
, “
Influence of Metallic Oxide on the Morphology and Enhanced Supercapacitive Performance of NiMoO4 Electrode Material
,”
Inorg. Chem. Commun.
,
112
, p.
107697
. 10.1016/j.inoche.2019.107697
55.
Wu
,
X.
,
Yang
,
F.
,
Dong
,
H.
,
Sui
,
J.
,
Zhang
,
Q.
,
Yu
,
J.
,
Zhang
,
Q.
, and
Dong
,
L.
,
2019
, “
Controllable Synthesis of MnO2 with Different Structures for Supercapacitor Electrodes
,”
J. Electroanal. Chem.
,
848
, p.
113332
. 10.1016/j.jelechem.2019.113332
56.
Rajagopal
,
R.
, and
Ryu
,
K.-S.
,
2020
, “
Homogeneous MnO2@TiO2 Core-Shell Nanostructure for High Performance Supercapacitor and Li-Ion Battery Applications
,”
J. Electroanal. Chem.
,
856
, p.
113669
.
57.
Xu
,
Z.
,
Yang
,
L.
,
Jin
,
Q.
, and
Hu
,
Z.
,
2019
, “
Improved Capacitance of NiCo2O4/Carbon Composite Resulted From Carbon Matrix with Multilayered Graphene
,”
Electrochim. Acta
,
295
, pp.
376
383
. 10.1016/j.electacta.2018.10.110
58.
Zhang
,
Y.
,
Yao
,
Q.-Q.
,
Gao
,
H.-L.
,
Wang
,
L.-Z.
,
Jia
,
X.-L.
,
Zhang
,
A.-Q.
,
Song
,
Y.-H.
,
Xia
,
T.-C.
, and
Dong
,
H.-C.
,
2014
, “
Facile Synthesis and Electrochemical Performance of Manganese Dioxide Doped by Activated Carbon, Carbon Nanofiber and Carbon Nanotube
,”
Powder Technol.
,
262
, pp.
150
155
. 10.1016/j.powtec.2014.04.080
59.
Wu
,
X.
,
Meng
,
L.
,
Wang
,
Q.
,
Zhang
,
W.
, and
Wang
,
Y.
,
2019
, “
High Flexibility and Large Energy Density Asymmetric Fibered-Supercapacitor Based on Unique NiCo2O4@MnO2 Core-Shell Nanobrush Arrays Electrode
,”
Electrochim. Acta
,
295
, pp.
532
539
. 10.1016/j.electacta.2018.10.196
You do not currently have access to this content.