Abstract

Li-ion battery fast-charging technology plays an important role in popularizing electric vehicles (EV), which critically need a charging process that is as simple and quick as pumping fuel for conventional internal combustion engine vehicles. To ensure stable and safe fast charging of Li-ion battery, understanding the electrochemical and thermal behaviors of battery electrodes under high rate charges is crucial, since it provides insight into the limiting factors that restrict the battery from acquiring energy at high rates. In this work, charging simulations are performed on Li-ion batteries that use the LiCoO2 (LCO), LiMn2O4 (LMO), and LiFePO4 (LFP) as the cathodes. An electrochemical-thermal coupling model is first developed and experimentally validated on a 2.6Ah LCO based Li-ion battery and is then adjusted to study the LMO and LFP based batteries. LCO, LMO, and LFP based Li-ion batteries exhibited different thermal responses during charges due to their different entropy profiles, and results show that the entropy change of the LCO battery plays a positive role in alleviating its temperature rise during charges. Among the batteries, the LFP battery is difficult to be charged at high rates due to the charge transfer limitation caused by the low electrical conductivity of the LFP cathode, which, however, can be improved through doping or adding conductive additives. A parametric study is also performed by considering different electrode thicknesses and secondary particle sizes. It reveals that the concentration polarization at the electrode and particle levels can be weaken by using thin electrodes and small solid particles, respectively. These changes are helpful to mitigate the diffusion limitation and improve the performance of Li-ion batteries during high rate charges, but careful consideration should be taken when applying these changes since they can reduce the energy density of the batteries.

References

1.
Meintz
,
A.
,
Zhang
,
J.
,
Vijayagopal
,
R.
,
Kreutzer
,
C.
,
Ahmed
,
S.
,
Bloom
,
I.
,
Burnham
,
A.
,
Carlson
,
R. B.
,
Dias
,
F.
,
Dufek
,
E. J.
,
Francfort
,
J.
,
Hardy
,
K.
,
Jansen
,
A. N.
,
Keyser
,
M.
,
Markel
,
A.
,
Michelbacher
,
C.
,
Mohanpurkar
,
M.
,
Pesaran
,
A.
,
Scoffield
,
D.
,
Shirk
,
M.
,
Stephens
,
T.
, and
Tanim
,
T.
,
2017
, “
Enabling Fast Charging—Vehicle Consideration
,”
J. Power Sources
,
367
, pp.
216
227
. 10.1016/j.jpowsour.2017.07.093
2.
Burnham
,
A.
,
Dufek
,
E. J.
,
Stephens
,
T.
,
Francfort
,
J.
,
Michelbacher
,
C.
,
Carlson
,
R. B.
,
Zhang
,
J.
,
Vijayagopal
,
R.
,
Dias
,
F.
,
Mohanpurkar
,
M.
,
Scoffield
,
D.
,
Hardy
,
K.
,
Shirk
,
M.
,
Hovsapian
,
R.
,
Ahmed
,
S.
,
Bloom
,
I.
,
Jansen
,
A. N.
,
Keyser
,
M.
,
Kreuzer
,
C.
,
Markel
,
A.
,
Meintz
,
A.
,
Pesaran
,
A.
, and
Tanim
,
T. R.
,
2017
, “
Enabling Fast Charging—Infrastructure and Economic Considerations
,”
J. Power Sources
,
367
, pp.
237
249
. 10.1016/j.jpowsour.2017.06.079
3.
Ahmed
,
S.
,
Bloom
,
I.
,
Jansen
,
A. N.
,
Tanim
,
T.
,
Dufek
,
E. J.
,
Pesaran
,
A.
,
Burnham
,
A.
,
Carlson
,
R. B.
,
Dias
,
F.
,
Hardy
,
K.
,
Keyser
,
M.
,
Kreuzer
,
C.
,
Markel
,
A.
,
Meintz
,
A.
,
Michelbacher
,
C.
,
Mohanpurkar
,
M.
,
Nelson
,
P. A.
,
Robertson
,
D. C.
,
Scoffield
,
D.
,
Shirk
,
M.
,
Stephens
,
T.
,
Vijayagopal
,
R.
, and
Zhang
,
J.
,
2017
, “
Enabling Fast Charging—A Battery Technology gap Assessment
,”
J. Power Sources
,
367
, pp.
250
262
. 10.1016/j.jpowsour.2017.06.055
4.
Keyser
,
M.
,
Pesaran
,
A.
,
Li
,
Q.
,
Santhanagopalan
,
S.
,
Smith
,
K.
,
Wood
,
E.
,
Ahmed
,
S.
,
Bloom
,
I.
,
Dufek
,
E.
,
Shirk
,
M.
,
Meintz
,
A.
,
Kreuzer
,
C.
,
Michelbacher
,
C.
,
Burnham
,
A.
,
Stephens
,
T.
,
Francfort
,
J.
,
Carlson
,
B.
,
Zhang
,
J.
,
Vijayagopal
,
R.
,
Hardy
,
K.
,
Dias
,
F.
,
Mohanpurkar
,
M.
,
Scoffield
,
D.
,
Jansen
,
A. N.
,
Tanim
,
T.
, and
Markel
,
A.
,
2017
, “
Enabling Fast Charging—Battery Thermal Considerations
,”
J. Power Sources
,
367
, pp.
228
236
. 10.1016/j.jpowsour.2017.07.009
5.
Li
,
Y.
,
El Gabaly
,
F.
,
Ferguson
,
T. R.
,
Smith
,
R. B.
,
Bartelt
,
N. C.
,
Sugar
,
J. D.
,
Fenton
,
K. R.
,
Cogswell
,
D. A.
,
Kilcoyne
,
A. L. D.
,
Tyliszczak
,
T.
,
Bazant
,
M. Z.
, and
Chueh
,
W. C.
,
2014
, “
Current-induced Transition From Particle-by-Particle to Concurrent Intercalation in Phase-Separating Battery Electrodes
,”
Nat. Mater.
,
13
(
12
), pp.
1149
1156
. 10.1038/nmat4084
6.
Colclasure
,
A. M.
,
Dunlop
,
A. R.
,
Trask
,
S. E.
,
Polzin
,
B. J.
,
Jansen
,
A. N.
, and
Smith
,
K.
,
2019
, “
Requirements for Enabling Extreme Fast Charging of High Energy Density Li-ion Cells While Avoiding Lithium Plating
,”
J. Electrochem. Soc.
,
166
(
8
), pp.
A1412
A1424
. 10.1149/2.0451908jes
7.
Takami
,
N.
,
Ise
,
K.
,
Harada
,
Y.
,
Iwasaki
,
T.
,
Kishi
,
T.
, and
Hoshina
,
K.
,
2018
, “
High-energy, Fast-Charging, Long-Life Lithium-ion Batteries Using TiNb2O7 Anodes for Automotive Applications
,”
J. Power Sources
,
396
, pp.
429
436
. 10.1016/j.jpowsour.2018.06.059
8.
Tsai
,
H. L.
,
Hsieh
,
C. T.
,
Li
,
J.
, and
Gandomi
,
Y. A.
,
2018
, “
Enabling High Rate Charge and Discharge Capability, low Internal Resistance, and Excellent Cyclability for Li-Ion Batteries Utilizing Graphene Additives
,”
Electrochim. Acta
,
273
, pp.
200
207
. 10.1016/j.electacta.2018.03.154
9.
Kim
,
D. S.
,
Kim
,
Y. E.
, and
Kim
,
H.
,
2019
, “
Improved Fast Charging Capability of Graphite Anodes via Amorphous Al2O3 Coating for High Power Lithium ion Batteries
,”
J. Power Sources
,
422
, pp.
18
24
. 10.1016/j.jpowsour.2019.03.027
10.
Yin
,
Y.
,
Hu
,
Y.
,
Choe
,
S. Y.
,
Cho
,
H.
, and
Joe
,
W. T.
,
2019
, “
New Fast Charging Methods of Lithium-ion Batteries Based on a Reduced Order Electrochemical Model Considering Side Reaction
,”
J. Power Sources
,
423
, pp.
367
379
. 10.1016/j.jpowsour.2019.03.007
11.
Zhao
,
R.
,
Zhang
,
S.
,
Gu
,
J.
, and
Liu
,
J.
,
2016
, “
Modeling the Electrochemical Behaviors of Charging Li-Ion Batteries With Different Initial Electrolyte Salt Concentrations
,”
Int. J. Energy Res.
,
40
(
8
), pp.
1085
1092
. 10.1002/er.3502
12.
Fang
,
H.
,
Depcik
,
C.
, and
Lvovich
,
V.
,
2018
, “
Optimal Pulse-Modulated Lithium-Ion Battery Charging: Algorithms and Simulation
,”
J. Energy Storage
,
15
, pp.
359
367
. 10.1016/j.est.2017.11.007
13.
Zhang
,
C.
,
Jiang
,
J.
,
Gao
,
Y.
,
Zhang
,
W.
,
Liu
,
Q.
, and
Hu
,
X.
,
2017
, “
Charging Optimization in Lithium-ion Batteries Based on Temperature Rise and Charge Time
,”
Appl. Energy
,
194
, pp.
569
577
. 10.1016/j.apenergy.2016.10.059
14.
Chu
,
Z.
,
Feng
,
X.
,
Ouyang
,
M.
,
Wang
,
Z.
,
Lu
,
L.
,
Li
,
J.
, and
Han
,
X.
,
2017
, “
Optimal Charge Current of Lithium Ion Battery
,”
Energy Procedia
,
142
, pp.
1867
1873
. 10.1016/j.egypro.2017.12.577
15.
von Lüders
,
C.
,
Keil
,
J.
,
Webersberger
,
M.
, and
Jossen
,
A.
,
2019
, “
Modeling of Lithium Plating and Lithium Stripping in Lithium-Ion Batteries
,”
J. Power Sources
,
414
, pp.
41
47
. 10.1016/j.jpowsour.2018.12.084
16.
Song
,
M.
, and
Choe
,
S. Y.
,
2019
, “
fast and Safe Charging Method Suppressing Side Reaction and Lithium Deposition Reaction in Lithium Ion Battery
,”
J. Power Sources
,
436
, p.
226835
. 10.1016/j.jpowsour.2019.226835
17.
Viswanathan
,
V. V.
,
Choi
,
D.
,
Wang
,
D.
,
Xu
,
W.
,
Towne
,
S.
,
Williford
,
R. E.
,
Zhang
,
J.-G.
,
Liu
,
J.
, and
Yang
,
Z.
,
2010
, “
Effect of Entropy Change of Lithium Intercalation in Cathodes and Anodes on Li-Ion Battery Thermal Management
,”
J. Power Sources
,
195
(
11
), pp.
3720
3729
. 10.1016/j.jpowsour.2009.11.103
18.
Mao
,
C.
,
Ruther
,
E. E.
,
Li
,
J.
,
Du
,
Z.
, and
Belharouak
,
I.
,
2018
, “
Identifying the Limiting Electrode in Lithium ion Batteries for Extreme Fast Charging
,”
Electrochem. Commun.
,
97
, pp.
37
41
. 10.1016/j.elecom.2018.10.007
19.
Smith
,
K.
, and
Wang
,
C. Y.
,
2006
, “
Power and Thermal Characterization of a Lithium-Ion Battery Pack for Hybrid-Electric Vehicles
,”
J. Power Sources
,
160
(
1
), pp.
662
673
. 10.1016/j.jpowsour.2006.01.038
20.
Thomas
,
K. E.
, and
Newman
,
J.
,
2003
, “
Heats of Mixing and of Entropy in Porous Insertion Electrodes
,”
J. Power Sources
,
119–121
, pp.
844
849
. 10.1016/S0378-7753(03)00283-0
21.
Kumaresan
,
K.
,
Sikha
,
G.
, and
White
,
R. E.
,
2008
, “
Thermal Model for a Li-ion Cell
,”
J. Electrochem. Soc.
,
155
(
2
), pp.
A164
A171
. 10.1149/1.2817888
22.
Yazami
,
R.
,
Reynier
,
Y.
, and
Fultz
,
B.
,
2006
, “
Entropymetry of Lithium Intercalation in Spinel Manganese Oxide: Effect of Lithium Stoichiometry
,”
ECS Trans.
,
1
(
26
), pp.
87
96
. 10.1149/1.2209361
23.
Yamada
,
A.
,
Koizumi
,
H.
,
Nishimura
,
S.-i.
,
Sonoyama
,
N.
,
Kanno
,
R.
,
Yonemura
,
M.
,
Nakamura
,
T.
, and
Kobayashi
,
Y.
,
2006
, “
Room-temperature Miscibility gap in LixFePO4
,”
Nat. Mater.
,
5
(
5
), pp.
357
360
. 10.1038/nmat1634
24.
Jalkanen
,
K.
,
Aho
,
T.
, and
Vuorilehto
,
K.
,
2013
, “
Entropy Change Effects on the Thermal Behaviors of a LiFePO4/Graphite Lithium-ion Cell at Different States of Charge
,”
J. Power Sources
,
243
, pp.
354
360
. 10.1016/j.jpowsour.2013.05.199
25.
Doyle
,
M.
,
Newman
,
J.
,
Gozdz
,
A. S.
,
Schmulz
,
C. N.
, and
Tarascon
,
J. M.
,
1996
, “
Comparison of Modeling Predictions with Experimental Data From Plastic Lithium ion Cells
,”
J. Electrochem. Soc.
,
143
(
6
), pp.
1890
1903
. 10.1149/1.1836921
26.
Ender
,
M.
,
Joos
,
J.
,
Weber
,
A.
, and
Ivers-Tiffée
,
E.
,
2014
, “
Anode Microstructures From High-Energy and High-Power Lithium-Ion Cylindrical Cells Obtained by X-ray Nano-Tomography
,”
J. Power Sources
,
269
, pp.
912
919
. 10.1016/j.jpowsour.2014.07.070
27.
Xia
,
H.
,
Meng
,
Y. S.
,
Lu
,
L.
, and
Ceder
,
G.
, (
2007
), “
Electrochemical Behavior and Li Diffusion Study of LiCoO2 Thin Film Electrodes Prepared by PLD
,” http://hdl.handle.net/1721.1/35827,
last accessed: 08/06/2019
.
28.
Appiah
,
W. A.
,
Park
,
J.
,
Byun
,
S.
,
Ryou
,
M. H.
, and
Lee
,
Y. M.
,
2016
, “
A Mathematical Model for Cyclic Aging of Spinel LiMn2O4/Graphite Lithium-Ion Cells
,”
J. Electrochem. Soc.
,
163
(
13
), pp.
A2757
A2767
. 10.1149/2.1061613jes
29.
Ye
,
Y.
,
Shi
,
Y.
,
Cai
,
N.
,
Lee
,
J.
, and
He
,
X.
,
2012
, “
Electro-Thermal Modeling and Experimental Validation for Lithium Ion Battery
,”
J. Power Sources
,
199
, pp.
227
238
. 10.1016/j.jpowsour.2011.10.027
30.
Safari
,
M.
, and
Delacourt
,
C.
,
2011
, “
Mathematical Modeling of Lithium Iron Phosphate Electrode: Galvanostatic Charge/Discharge and Path Dependence
,”
J. Electrochem. Soc.
,
158
(
2
), pp.
A63
A73
. 10.1149/1.3515902
31.
Srinivasan
,
V.
, and
Newman
,
J.
,
2004
, “
Discharge Model for the Lithium Iron-Phosphate Electrode
,”
J. Electrochem. Soc.
,
151
(
10
), pp.
A1517
A1529
. 10.1149/1.1785012
32.
Li
,
J.
,
Cheng
,
Y.
,
Ai
,
L.
,
Jia
,
M.
,
Du
,
S.
,
Yin
,
B.
,
Woo
,
S.
, and
Zhang
,
H.
,
2015
, “
3D Simulation on the Internal Distributed Properties of Lithium-Ion Battery With Planar Tabbed Configuration
,”
J. Power Sources
,
293
, pp.
993
1005
. 10.1016/j.jpowsour.2015.06.034
33.
Xu
,
M.
,
Zhang
,
Z.
,
Wang
,
X.
,
Jia
,
L.
, and
Yang
,
L.
,
2015
, “
A Pseudo Three-Dimensional Electrochemical-Thermal Model of a Prismatic LiFePO4 Battery During Discharge Process
,”
Energy
,
80
, pp.
303
317
. 10.1016/j.energy.2014.11.073
34.
Thorat
,
I. V.
,
Joshi
,
T.
,
Zaghib
,
K.
,
Harb
,
J. N.
, and
Wheeler
,
D. R.
,
2011
, “
Understanding Rate-Limiting Mechanism in LiFePO4 Cathodes for Li-Ion Batteries
,”
J. Electrochem. Soc.
,
158
(
11
), pp.
A1185
A1193
. 10.1149/2.001111jes
35.
Taheri
,
P.
,
Yazdanpour
,
M.
, and
Bahrami
,
M.
,
2013
, “
Transient Three-Dimensional Thermal Model for Batteries With Thin Electrodes
,”
J. Power Sources
,
243
, pp.
280
289
. 10.1016/j.jpowsour.2013.05.175
36.
Wu
,
B.
,
Yufit
,
V.
,
Marinescu
,
M.
,
Offer
,
G. J.
,
Martinez-Botas
,
R. F.
, and
Brandon
,
N. P.
,
2013
, “
Coupled Thermal-Electrochemical Modeling of Uneven Heat Generation in Lithium-Ion Battery Packs
,”
J. Power Sources
,
243
, pp.
544
554
. 10.1016/j.jpowsour.2013.05.164
37.
Zavalis
,
T. G.
,
Behm
,
M.
, and
Lindbergh
,
G.
,
2012
, “
Investigation of Short-Circuit Scenarios in a Lithium-Ion Battery Cell
,”
J. Electrochem. Soc.
,
159
(
6
), pp.
A848
A859
. 10.1149/2.096206jes
38.
Guzman
,
G.
,
Vazquez-Arenas
,
J.
,
Ramos-Sanchez
,
G.
,
Bautista-Ramirez
,
M.
, and
Gonzalez
,
I.
,
2017
, “
Improved Performance of LiFePO4 Cathode for Li-Ion Batteries Through Percolation Studies
,”
Electrochim. Acta
,
247
, pp.
451
459
. 10.1016/j.electacta.2017.06.172
39.
Li
,
Y.
,
Qi
,
F.
,
Guo
,
H.
,
Guo
,
Z.
,
Li
,
M.
, and
Wu
,
W.
,
2019
, “
Characteristics Investigation of an Electrochemical-Thermal Coupled Model for a LiFePO4/Graphene Hybrid Cathode Lithium-Ion Battery
,”
Case Stud. Therm. Eng.
,
13
, p.
100387
. 10.1016/j.csite.2018.100387
40.
Satyavani
,
T.
,
Kiran
,
B.
,
Kumar
,
R.
,
Kumar
,
V. R.
,
and Naidu
,
A. S.
, and
V
,
S.
,
2016
, “
Effect of Particle Size on dc Conductivity, Activation Energy and Diffusion Coefficient of Lithium Iron Phosphate in Li-ion Cells
,”
Eng. Sci. Technol. Int. J.
,
19
(
1
), pp.
40
44
. 10.1016/j.jestch.2015.05.011
41.
Zhao
,
R.
,
Gu
,
J.
, and
Liu
,
J.
,
2014
, “
An Investigation on the Significance of Reversible Heat to the Thermal Behavior of Lithium Ion Battery Through Simulations
,”
J. Power Sources
,
266
, pp.
422
432
. 10.1016/j.jpowsour.2014.05.034
42.
Nitta
,
N.
,
Wu
,
F.
,
Lee
,
J. T.
, and
Yushin
,
G.
,
2015
, “
Li-ion Battery Materials: Present and Future
,”
Mater. Today
,
18
(
5
), pp.
252
264
. 10.1016/j.mattod.2014.10.040
43.
Lu
,
W.
,
Belharouak
,
I.
,
Liu
,
J.
, and
Amine
,
K.
,
2007
, “
Thermal Properties of Li4/3Ti5/3O4/LiMn2O4 Cell
,”
J. Power Sources
,
174
(
2
), pp.
673
677
. 10.1016/j.jpowsour.2007.06.199
44.
Eftekhari
,
A.
,
2017
, “
LiFePO4/C Nanocomposites for Lithium-Ion Batteries
,”
J. Power Sources
,
343
, pp.
395
411
. 10.1016/j.jpowsour.2017.01.080
45.
Ong
,
M. T.
,
Verners
,
O.
,
Draeger
,
E. W.
,
van Duin
,
A. C. T.
,
Lordi
,
V.
, and
Pask
,
J. E.
,
2015
, “
Lithium ion Solvation and Diffusion in Bulk Organic Electrolytes From First-Principles and Classical Reactive Molecular Dynamics
,”
J. Phys. Chem. B
,
119
(
4
), pp.
1535
1545
. 10.1021/jp508184f
46.
Lee
,
Y. S.
, and
Ryu
,
K. S.
,
2017
, “
Study of the Lithium Diffusion Properties and High Rate Performance of TiNb6O17 as an Anode in Lithium Secondary Battery
,”
Sci. Rep
,
7
(
1
), p.
16617
. 10.1038/s41598-017-16711-9
47.
Park
,
C. K.
,
Park
,
S. B.
,
Oh
,
S. H.
,
Jang
,
H.
, and
Cho
,
W. I.
,
2011
, “
Li ion Diffusivity and Improved Electrochemical Performances of the Carbon Coated LiFePO4
,”
Bull. Korean Chem. Soc
,
32
(
3
), pp.
836
840
. 10.5012/bkcs.2011.32.3.836
48.
Zhao
,
R.
,
Liu
,
J.
, and
Gu
,
J.
,
2015
, “
The Effects of Electrode Thickness on the Electrochemical and Thermal Characteristics of Lithium ion Battery
,”
Appl. Energy
,
139
, pp.
220
229
. 10.1016/j.apenergy.2014.11.051
49.
Arora
,
P.
,
Doyle
,
M.
, and
White
,
R. E.
,
1999
, “
Mathematical Modeling of the Lithium Deposition Overcharge Reaction in Lithium-Ion Batteries Using Carbon-Based Negative Electrodes
,”
J. Electrochem. Soc.
,
146
(
10
), pp.
3543
3553
. 10.1149/1.1392512
50.
Kim
,
D. K.
,
Muralidharan
,
P.
,
Lee
,
H.-W.
,
Ruffo
,
R.
,
Yang
,
Y.
,
Chan
,
C. K.
,
Peng
,
H.
,
Huggins
,
R. A.
, and
Cui
,
Y.
,
2008
, “
Spinel LiMn2O4 Nanorods as Lithium Ion Battery Cathodes
,”
Nano Lett.
,
8
(
11
), pp.
3948
3952
. 10.1021/nl8024328
51.
Chan
,
C. K.
,
Peng
,
H.
,
Liu
,
G.
,
Mcllwrath
,
K.
,
Zhang
,
X. F.
,
Huggins
,
R. A.
, and
Cui
,
Y.
,
2008
, “
High-performance Lithium Battery Anodes Using Silicon Nanowires
,”
Nat. Nanotechnol.
,
3
(
1
), pp.
31
35
. 10.1038/nnano.2007.411
52.
Wu
,
H.
, and
Cui
,
Y.
,
2012
, “
Designing Nanostructured Si Anodes for High Energy Lithium Ion Batteries
,”
Nano Today
,
7
(
5
), pp.
414
429
. 10.1016/j.nantod.2012.08.004
You do not currently have access to this content.