Abstract

In recent years, safety-related accidents caused by lithium-ion battery (LIB) failures have often been reported and highlighted in the news. Thermal runaway (TR), as one of the most critical failure modes, and subsequent propagation can lead to catastrophic consequences for the battery pack or LIB module. In this study, TR propagation behavior between two batteries was studied. During the experiments, the TR of the first battery was triggered by mechanical abusive loading. The 3D thermal runaway model is combined with the electrical and thermal conduction model to construct a battery model for the TR model. Two typical TR propagation modes were observed and summarized from the simulation results according to different battery spacings. The mechanisms of these patterns are further discussed through the combination of computational models. High overall temperatures and localized overheating are the two main modes of TR propagation. The state of charge (SOC) is also a key factor that determines the probability and the speed of propagation. In addition, a simplified mathematical model is provided to improve the computational efficiency. Our results provide theoretical insights into the basic understanding of the TR propagation within battery packs. Results lay a strong foundation to develop an effective and efficient computing framework for the safe design of battery modules.

References

1.
Scrosati
,
B.
, and
Garche
,
J.
,
2010
, “
Lithium Batteries: Status, Prospects and Future
,”
J. Power Sources
,
195
(
9
), pp.
2419
2430
. 10.1016/j.jpowsour.2009.11.048
2.
Wang
,
Q.
,
Ping
,
P.
,
Zhao
,
X.
,
Chu
,
G.
,
Sun
,
J.
, and
Chen
,
C.
,
2012
, “
Thermal Runaway Caused Fire and Explosion of Lithium Ion Battery
,”
J. Power Sources
,
208
, pp.
210
224
. 10.1016/j.jpowsour.2012.02.038
3.
Xu
,
J.
,
Liu
,
B. H.
,
Wang
,
X. Y.
, and
Hu
,
D. Y.
,
2016
, “
Computational Model of 18650 Lithium-Ion Battery With Coupled Strain Rate and SOC Dependencies
,”
Appl. Energy
,
172
, pp.
180
189
. 10.1016/j.apenergy.2016.03.108
4.
Feng
,
X.
,
Sun
,
J.
,
Ouyang
,
M.
,
Wang
,
F.
,
He
,
X.
,
Lu
,
L.
, and
Peng
,
H.
,
2015
, “
Characterization of Penetration Induced Thermal Runaway Propagation Process Within a Large Format Lithium Ion Battery Module
,”
J. Power Sources
,
275
, pp.
261
273
. 10.1016/j.jpowsour.2014.11.017
5.
Xu
,
J.
,
Jia
,
Y.
,
Liu
,
B.
,
Zhao
,
H.
,
Yu
,
H.
,
Li
,
J.
, and
Yin
,
S.
,
2018
, “
Coupling Effect of State-of-Health and State-of-Charge on the Mechanical Integrity of Lithium-Ion Batteries
,”
Exp. Mech.
,
58
(
4
), pp.
633
643
. 10.1007/s11340-018-0380-9
6.
Sahraei
,
E.
,
Meier
,
J.
, and
Wierzbicki
,
T.
,
2014
, “
Characterizing and Modeling Mechanical Properties and Onset of Short Circuit for Three Types of Lithium-Ion Pouch Cells
,”
J. Power Sources
,
247
, pp.
503
516
. 10.1016/j.jpowsour.2013.08.056
7.
Xu
,
J.
,
Wang
,
L.
,
Guan
,
J.
, and
Yin
,
S.
,
2016
, “
Coupled Effect of Strain Rate and Solvent on Dynamic Mechanical Behaviors of Separators in Lithium Ion Batteries
,”
Mater. Des.
,
95
, pp.
319
328
. 10.1016/j.matdes.2016.01.082
8.
Wang
,
L.
,
Yin
,
S.
,
Zhang
,
C.
,
Huan
,
Y.
, and
Xu
,
J.
,
2018
, “
Mechanical Characterization and Modeling for Anodes and Cathodes in Lithium-Ion Batteries
,”
J. Power Sources
,
392
, pp.
265
273
. 10.1016/j.jpowsour.2018.05.007
9.
Xu
,
J.
,
Liu
,
B. H.
,
Wang
,
L. B.
, and
Shang
,
S.
,
2015
, “
Dynamic Mechanical Integrity of Cylindrical Lithium-Ion Battery Cell Upon Crushing
,”
Eng. Fail. Anal.
,
53
, pp.
97
110
. 10.1016/j.engfailanal.2015.03.025
10.
Xu
,
J.
,
Liu
,
B. H.
, and
Hu
,
D. Y.
,
2016
, “
State of Charge Dependent Mechanical Integrity Behavior of 18650 Lithium-Ion Batteries
,”
Sci. Rep.
,
6
, p.
21829
. 10.1038/srep21829
11.
Wang
,
L.
,
Yin
,
S.
,
Yu
,
Z.
,
Wang
,
Y.
,
Yu
,
T. X.
,
Zhao
,
J.
,
Xie
,
Z.
,
Li
,
Y.
, and
Xu
,
J.
,
2018
, “
Unlocking the Significant Role of Shell Material for Lithium-Ion Battery Safety
,”
Mater. Des.
,
160
, pp.
601
610
. 10.1016/j.matdes.2018.10.002
12.
Coman
,
P. T.
,
Darcy
,
E. C.
,
Veje
,
C. T.
, and
White
,
R. E.
,
2017
, “
Modelling Li-Ion Cell Thermal Runaway Triggered by an Internal Short Circuit Device Using an Efficiency Factor and Arrhenius Formulations
,”
J. Electrochem. Soc.
,
164
(
4
), pp.
A587
A593
. 10.1149/2.0341704jes
13.
Huang
,
P.
,
Ping
,
P.
,
Li
,
K.
,
Chen
,
H.
,
Wang
,
Q.
,
Wen
,
J.
, and
Sun
,
J.
,
2016
, “
Experimental and Modeling Analysis of Thermal Runaway Propagation Over the Large Format Energy Storage Battery Module With Li4Ti5O12 Anode
,”
Appl. Energy
,
183
, pp.
659
673
. 10.1016/j.apenergy.2016.08.160
14.
Bandhauer
,
T. M.
,
Garimella
,
S.
, and
Fuller
,
T. F.
,
2011
, “
A Critical Review of Thermal Issues in Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
158
(
3
), pp.
R1
R25
. 10.1149/1.3515880
15.
Liu
,
B.
,
Zhang
,
J.
,
Zhang
,
C.
, and
Xu
,
J.
,
2018
, “
Mechanical Integrity of 18650 Lithium-Ion Battery Module: Packing Density and Packing Mode
,”
Eng. Fail. Anal.
,
91
, pp.
315
326
. 10.1016/j.engfailanal.2018.04.041
16.
Liu
,
B.
,
Zhao
,
H.
,
Yu
,
H.
,
Li
,
J.
, and
Xu
,
J.
,
2017
, “
Multiphysics Computational Framework for Cylindrical Lithium-Ion Batteries Under Mechanical Abusive Loading
,”
Electrochim. Acta
,
256
, pp.
172
184
. 10.1016/j.electacta.2017.10.045
17.
Liu
,
B.
,
Jia
,
Y.
,
Li
,
J.
,
Yin
,
S.
,
Yuan
,
C.
,
Hu
,
Z.
,
Wang
,
L.
,
Li
,
Y.
, and
Xu
,
J.
,
2018
, “
Unlocking Safety Issues Caused by Internal Short Circuits in Lithium-Ion Batteries
,”
J. Mater. Chem. A
,
6
(
43
), pp.
21475
21484
. 10.1039/C8TA08997C
18.
Spotnitz
,
R. M.
,
Weaver
,
J.
,
Yeduvaka
,
G.
,
Doughty
,
D. H.
, and
Roth
,
E. P.
,
2007
, “
Simulation of Abuse Tolerance of Lithium-Ion Battery Packs
,”
J. Power Sources
,
163
(
2
), pp.
1080
1086
. 10.1016/j.jpowsour.2006.10.013
19.
Hatchard
,
T. D.
,
MacNeil
,
D. D.
,
Basu
,
A.
, and
Dahn
,
J. R.
,
2001
, “
Thermal Model of Cylindrical and Prismatic Lithium-Ion Cells
,”
J. Electrochem. Soc.
,
148
(
7
), pp.
A755
A761
. 10.1149/1.1377592
20.
Kim
,
G.-H.
,
Pesaran
,
A.
, and
Spotnitz
,
R.
,
2007
, “
A Three-Dimensional Thermal Abuse Model for Lithium-Ion Cells
,”
J. Power Sources
,
170
(
2
), pp.
476
489
. 10.1016/j.jpowsour.2007.04.018
21.
Krishna
,
S.
,
Divya
,
C.
, and
Jain
,
A.
,
2016
, “
Experimental and Theoretical Analysis of a Method to Predict Thermal Runaway in Li-ion Cells
,”
J. Power Sources
,
330
, pp.
167
174
. http://dx.doi.org/10.1016/j.jpowsour.2016.08.133
22.
Lamb
,
J.
,
Orendorff
,
C. J.
,
Steele
,
L. A. M.
, and
Spangler
,
S. W.
,
2015
, “
Failure Propagation in Multi-Cell Lithium Ion Batteries
,”
J. Power Sources
,
283
, pp.
517
523
. 10.1016/j.jpowsour.2014.10.081
23.
Lopez
,
F. C.
,
Jeevarajan
,
J. A.
, and
Mukherjee
,
P. P.
,
2015
, “
Experimental Analysis of Thermal Runaway and Propagation in Lithium-Ion Battery Modules
,”
J. Electrochem. Soc.
,
162
(
9
), pp.
A1905
A1915
. 10.1149/2.0921509jes
24.
Larsson
,
F.
,
Anderson
,
J.
,
Andersson
,
P.
, and
Mellander
,
B. E.
,
2016
, “
Thermal Modelling of Cell-to-Cell Fire Propagation and Cascading Thermal Runaway Failure Effects for Lithium-Ion Battery Cells and Modules Using Fire Walls
,”
J. Electrochem. Soc.
,
163
(
14
), pp.
A2854
A2865
. 10.1149/2.0131614jes
25.
Chiu
,
K.-C.
,
Lin
,
C.-H.
,
Yeh
,
S.-F.
,
Lin
,
Y.-H.
, and
Chen
,
K.-C.
,
2014
, “
An Electrochemical Modeling of Lithium-Ion Battery Nail Penetration
,”
J. Power Sources
,
251
, pp.
254
263
. 10.1016/j.jpowsour.2013.11.069
26.
Zhao
,
W.
,
Luo
,
G.
, and
Wang
,
C.-Y.
,
2015
, “
Modeling Internal Shorting Process in Large-Format Li-Ion Cells
,”
162
(
7
), pp.
A1352
A1364
. 10.1149/2.1031507jes
27.
Maleki
,
H.
, and
Shamsuri
,
A. K.
,
2003
, “
Thermal Analysis and Modeling of a Notebook Computer Battery
,”
J. Power Sources
,
115
(
1
), pp.
131
136
. 10.1016/S0378-7753(02)00722-X
28.
Fang
,
W.
,
Ramadass
,
P.
, and
Zhang
,
Z.
,
2014
, “
Study of Internal Short in a Li-Ion Cell-II. Numerical Investigation Using a 3D Electrochemical-Thermal Model
,”
J. Power Sources
,
248
, pp.
1090
1098
. 10.1016/j.jpowsour.2013.10.004
29.
Zhao
,
R.
,
Liu
,
J.
, and
Gu
,
J.
,
2016
, “
Simulation and Experimental Study on Lithium Ion Battery Short Circuit
,”
Appl. Energy
,
173
, pp.
29
39
. 10.1016/j.apenergy.2016.04.016
30.
Zhao
,
R.
,
Liu
,
J.
, and
Gu
,
J.
,
2017
, “
A Comprehensive Study on Li-Ion Battery Nail Penetrations and the Possible Solutions
,”
Energy
,
123
, pp.
392
401
. 10.1016/j.energy.2017.02.017
You do not currently have access to this content.