The Butler–Volmer equation has been widely used to analyze the electron transfer for electrochemical simulation. Although it has been broadly employed with numerous successful applications, the Butler–Volmer equation needs to be solved numerically to find the activation overpotential, which results in the increase of the calculation difficulties. There are also some parameters in Butler–Volmer equation such as exchange current density and symmetry factor that are not always known parameters. In order to avoid the latest mentioned limitation and the numerical calculation which is time consuming and for simplification, there are some approximation equations such as Tafel, linear low polarization, and hyperbolic sine approximation. However, all these equations are only applicable in a specific range of current density or definite condition. The aim of this paper is to present a new form of Butler–Volmer equation using algebraic operation to calculate activation overpotential. The devised equation should be accurate, have a wide application range, able to remove any numerical calculation, and be useful to find exchange current density. In this research, a new form of Butler–Volmer equation and a new approximation equation (called K–J equation) have been successfully derived. The comparison result shows that the new derived form is exactly equal to the Butler–Volmer equation to calculate the activation overpotential, and it removed the necessity of numerical calculation to find the activation overpotential. In addition, the K–J approximation has a good agreement with Butler–Volmer equation over a wide range of current density and is applicable to predict the activation loss.

References

1.
Hoogers
,
G.
,
2002
,
Fuel Cell Technology Handbook
,
CRC Press
, Boca Raton, FL.
2.
Shen
,
S.
, and
Ni
,
M.
,
2015
, “
2D Segment Model for a Solid Oxide Fuel Cell With a Mixed Ionic and Electronic Conductor as Electrolyte
,”
Int. J. Hydrogen Energy
,
40
(
15
), pp.
5160
5168
.
3.
Sierra
,
J. M.
,
Figueroa-Ramírez
,
S. J.
,
Díaz
,
S. E.
,
Vargas
,
J.
, and
Sebastian
,
P. J.
,
2014
, “
Numerical Evaluation of a PEM Fuel Cell With Conventional Flow Fields Adapted to Tubular Plates
,”
Int. J. Hydrogen Energy
,
39
(
29
), pp.
16694
16705
.
4.
Chandesris
,
M.
,
Médeau
,
V.
,
Guillet
,
N.
,
Chelghoum
,
S.
,
Thoby
,
D.
, and
Fouda-Onana
,
F.
,
2015
, “
Membrane Degradation in PEM Water Electrolyzer: Numerical Modeling and Experimental Evidence of the Influence of Temperature and Current Density
,”
Int. J. Hydrogen Energy
,
40
(
3
), pp.
1353
1366
.
5.
Kang
,
T.
,
Kim
,
M.
,
Kim
,
J.
, and
Sohn
,
Y.-J.
,
2015
, “
Numerical Modeling of the Degradation Rate for Membrane Electrode Assemblies in High Temperature Proton Exchange Membrane Fuel Cells and Analyzing Operational Effects of the Degradation
,”
Int. J. Hydrogen Energy
,
40
(
15
), pp.
5444
5455
.
6.
Mehrpooya
,
M.
,
Akbarpour
,
S.
,
Vatani
,
A.
, and
Rosen
,
M. A.
,
2014
, “
Modeling and Optimum Design of Hybrid Solid Oxide Fuel Cell-Gas Turbine Power Plants
,”
Int. J. Hydrogen Energy
,
39
(
36
), pp.
21196
21214
.
7.
Salomov
,
U. R.
,
Chiavazzo
,
E.
, and
Asinari
,
P.
,
2015
, “
Gas-Dynamic and Electro-Chemical Optimization of Catalyst Layers in High Temperature Polymeric Electrolyte Membrane Fuel Cells
,”
Int. J. Hydrogen Energy
,
40
(
15
), pp.
5425
5431
.
8.
Misran
,
E.
,
Mat Hassan
,
N. S.
,
Wan Daud
,
W. R.
,
Majlan
,
E. H.
, and
Rosli
,
M. I.
,
2013
, “
Electrochemical Properties of a PEMFC Operating With Saturated Hydrogen and Dry Air
,”
Int. J. Hydrogen Energy
,
38
(
22
), pp.
9395
9400
.
9.
Antunes
,
R.
, and
Skrzypkiewicz
,
M.
,
2015
, “
Chronoamperometric Investigations of Electro-Oxidation of Lignite in Direct Carbon Bed Solid Oxide Fuel Cell
,”
Int. J. Hydrogen Energy
,
40
(
12
), pp.
4357
4369
.
10.
Kuzmin
,
R.
,
Maximov
,
D.
,
Savenkova
,
N.
, and
Shobukhov
,
A.
,
2012
, “
Mathematical Modeling of Hysteresis in Porous Electrodes
,”
J. Math. Chem.
,
50
(
9
), pp.
2471
2477
.
11.
Sørensen
,
B.
,
2012
,
Hydrogen and Fuel Cells: Emerging Technologies and Applications
,
Academic Press
, New York.
12.
Henstridge
,
M. C.
,
Ward
,
K. R.
, and
Compton
,
R. G.
,
2014
, “
The Marcus-Hush Model of Electrode Kinetics at a Single Nanoparticle
,”
J. Electroanal. Chem.
,
712
(1), pp.
14
18
.
13.
Laborda
,
E.
,
Suwatchara
,
D.
,
Rees
,
N. V.
,
Henstridge
,
M. C.
,
Molina
,
A.
, and
Compton
,
R. G.
,
2013
, “
Variable Temperature Study of Electro-Reduction of 3-Nitrophenolate Via Cyclic and Square Wave Voltammetry: Molecular Insights Into Electron Transfer Processes Based on the Asymmetric Marcus–Hush Model
,”
Electrochim. Acta
,
110
(1), pp.
772
779
.
14.
Bhat
,
M. A.
, and
Ingole
,
P. P.
,
2012
, “
Evidence for Formation of Ion Pair Stabilized Diiodomethane Radical Anion in 1-Butyl-3-Methylimidazolium Tetrafluoroborate Room Temperature Ionic Liquid
,”
Electrochim. Acta
,
72
(1), pp.
18
22
.
15.
Mamedov
,
B.
,
2013
, “
Analytical Evaluation of the Marcus–Hush–Chidsey Function Using Binomial Expansion Theorem and Error Functions
,”
J. Math. Chem.
,
51
(
10
), pp.
2699
2703
.
16.
Henstridge
,
M. C.
,
Laborda
,
E.
,
Rees
,
N. V.
, and
Compton
,
R. G.
,
2012
, “
Marcus–Hush–Chidsey Theory of Electron Transfer Applied to Voltammetry: A Review
,”
Electrochim. Acta
,
84
(1), pp.
12
20
.
17.
Mousa
,
G.
,
Golnaraghi
,
F.
,
DeVaal
,
J.
, and
Young
,
A.
,
2014
, “
Detecting Proton Exchange Membrane Fuel Cell Hydrogen Leak Using Electrochemical Impedance Spectroscopy Method
,”
J. Power Sources
,
246
(1), pp.
110
116
.
18.
Orvananos
,
B.
,
Malik
,
R.
,
Yu
,
H.-C.
,
Abdellahi
,
A.
,
Grey
,
C. P.
,
Ceder
,
G.
, and
Thornton
,
K.
,
2014
, “
Architecture Dependence on the Dynamics of Nano-LiFePO4 Electrodes
,”
Electrochim. Acta
,
137
(1), pp.
245
257
.
19.
He
,
Z.
,
Liu
,
J.
,
Han
,
H.
,
Chen
,
Y.
,
Zhou
,
Z.
,
Zheng
,
S.
,
Lu
,
W.
,
Liu
,
S.
, and
He
,
Z.
,
2013
, “
Effects of Organic Additives Containing NH2 and SO3H on Electrochemical Properties of Vanadium Redox Flow Battery
,”
Electrochim. Acta
,
106
(1), pp.
556
562
.
20.
Allen
,
J. A.
,
Tulloch
,
J.
,
Wibberley
,
L.
, and
Donne
,
S. W.
,
2014
, “
Kinetic Analysis of the Anodic Carbon Oxidation Mechanism in a Molten Carbonate Medium
,”
Electrochim. Acta
,
129
(1), pp.
389
395
.
21.
Chae
,
J. E.
,
Annaka
,
K.
,
Hong
,
K.
,
Lee
,
S.-I.
,
Munakata
,
H.
,
Kim
,
S.-S.
, and
Kanamura
,
K.
,
2014
, “
Electrochemical Characterization of Phosphorous-Doped Soft Carbon Using Single Particle for Lithium Battery Anode
,”
Electrochim. Acta
,
130
(1), pp.
60
65
.
22.
Yang
,
X.-G.
,
Ye
,
Q.
, and
Cheng
,
P.
,
2014
, “
Oxygen Starvation Induced Cell Potential Decline and Corresponding Operating State Transitions of a Direct Methanol Fuel Cell in Galvanostatic Regime
,”
Electrochim. Acta
,
117
(1), pp.
179
191
.
23.
Senarathna
,
K. G. C.
,
Mantilaka
,
M. M. M. G. P. G.
,
Peiris
,
T. A. N.
,
Pitawala
,
H. M. T. G. A.
,
Karunaratne
,
D. G. G. P.
, and
Rajapakse
,
R. M. G.
,
2014
, “
Convenient Routes to Synthesize Uncommon Vaterite Nanoparticles and the Nanocomposites of Alkyd Resin/Polyaniline/Vaterite: The Latter Possessing Superior Anticorrosive Performance on Mild Steel Surfaces
,”
Electrochim. Acta
,
117
(1), pp.
460
469
.
24.
Schluckner
,
C.
,
Subotić
,
V.
,
Lawlor
,
V.
, and
Hochenauer
,
C.
,
2014
, “
Three-Dimensional Numerical and Experimental Investigation of an Industrial-Sized SOFC Fueled by Diesel Reformat—Part I: Creation of a Base Model for Further Carbon Deposition Modeling
,”
Int. J. Hydrogen Energy
,
39
(
33
), pp.
19102
19118
.
25.
Bove
,
R.
, and
Ubertini
,
S.
,
2008
,
Modeling Solid Oxide Fuel Cells
,
Springer
, Berlin.
26.
Kakaç
,
S.
,
Pramuanjaroenkij
,
A.
, and
Vasil'ev
,
L. L.
,
2008
,
Mini-Micro Fuel Cells: Fundamentals and Applications
,
Springer
, Dordrecht, The Netherlands.
27.
Yang
,
P.
,
Zhang
,
H.
, and
Hu
,
Z.
,
2016
, “
Parametric Study of a Hybrid System Integrating a Phosphoric Acid Fuel Cell With an Absorption Refrigerator for Cooling Purposes
,”
Int. J. Hydrogen Energy
,
41
(
5
), pp.
3579
3590
.
28.
Noren
,
D.
, and
Hoffman
,
M.
,
2005
, “
Clarifying the Butler–Volmer Equation and Related Approximations for Calculating Activation Losses in Solid Oxide Fuel Cell Models
,”
J. Power Sources
,
152
(1), pp.
175
181
.
29.
Thanomjit
,
C.
,
Patcharavorachot
,
Y.
,
Ponpesh
,
P.
, and
Arpornwichanop
,
A.
,
2015
, “
Thermodynamic Analysis of Solid Oxide Fuel Cell System Using Different Ethanol Reforming Processes
,”
Int. J. Hydrogen Energy
,
40
(
21
), pp.
6950
6958
.
30.
Singhal
,
S.
,
2003
,
High-Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications
,
Elsevier
, Oxford, UK.
31.
Zhu
,
H.
, and
Kee
,
R. J.
,
2003
, “
A General Mathematical Model for Analyzing the Performance of Fuel-Cell Membrane-Electrode Assemblies
,”
J. Power Sources
,
117
(1), pp.
61
74
.
32.
Cardoso
,
D. S. P.
,
Amaral
,
L.
,
Santos
,
D. M. F.
,
Šljukić
,
B.
,
Sequeira
,
C. A. C.
,
Macciò
,
D.
, and
Saccone
,
A.
,
2015
, “
Enhancement of Hydrogen Evolution in Alkaline Water Electrolysis by Using Nickel-Rare Earth Alloys
,”
Int. J. Hydrogen Energy
,
40
(
12
), pp.
4295
4302
.
33.
Minutillo
,
M.
,
Perna
,
A.
, and
Jannelli
,
E.
,
2014
, “
SOFC and MCFC System Level Modeling for Hybrid Plants Performance Prediction
,”
Int. J. Hydrogen Energy
,
39
(
36
), pp.
21688
21699
.
34.
Hajimolana
,
S. A.
,
Hussain
,
M. A.
,
Daud
,
W. A. W.
,
Soroush
,
M.
, and
Shamiri
,
A.
,
2011
, “
Mathematical Modeling of Solid Oxide Fuel Cells: A Review
,”
Renewable Sustainable Energy Rev.
,
15
(
4
), pp.
1893
1917
.
35.
Scott
,
K.
, and
Mamlouk
,
M.
,
2009
, “
A Cell Voltage Equation for an Intermediate Temperature Proton Exchange Membrane Fuel Cell
,”
Int. J. Hydrogen Energy
,
34
(
22
), pp.
9195
9202
.
36.
Ni
,
M.
,
Leung
,
M. K.
, and
Leung
,
D. Y.
,
2007
, “
Parametric Study of Solid Oxide Fuel Cell Performance
,”
Energy Convers. Manage.
,
48
(
5
), pp.
1525
1535
.
37.
Apostol
,
T. M.
,
2007
,
Calculus
, Vol. 1,
Wiley
, New York.
38.
Artin
,
E.
,
1964
,
The Gamma Function
, Vol.
14
, Dover Publications,
New York
.
39.
Doddathimmaiah
,
A.
, and
Andrews
,
J.
,
2009
, “
Theory, Modelling and Performance Measurement of Unitised Regenerative Fuel Cells
,”
Int. J. Hydrogen Energy
,
34
(
19
), pp.
8157
8170
.
40.
Song
,
C.
,
Tang
,
Y.
,
Zhang
,
J. L.
,
Zhang
,
J.
,
Wang
,
H.
,
Shen
,
J.
,
McDermid
,
S.
,
Li
,
J.
, and
Kozak
,
P.
,
2007
, “
PEM Fuel Cell Reaction Kinetics in the Temperature Range of 23–120 C
,”
Electrochim. Acta
,
52
(
7
), pp.
2552
2561
.
41.
Ticianelli
,
E.
,
Derouin
,
C.
,
Redondo
,
A.
, and
Srinivasan
,
S.
,
1988
, “
Methods to Advance Technology of Proton Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
,
135
(
9
), pp.
2209
2214
.
42.
Mendoza-Hernandez
,
O. S.
,
Ishikawa
,
H.
,
Nishikawa
,
Y.
,
Maruyama
,
Y.
,
Sone
,
Y.
, and
Umeda
,
M.
,
2014
, “
State of Charge Dependency of Graphitized-Carbon-Based Reactions in a Lithium-Ion Secondary Cell Studied by Electrochemical Impedance Spectroscopy
,”
Electrochim. Acta
,
131
(1), pp.
168
173
.
43.
Tant
,
S.
,
Rosini
,
S.
,
Thivel
,
P. X.
,
Druart
,
F.
,
Rakotondrainibe
,
A.
,
Geneston
,
T.
, and
Butel
,
Y.
,
2014
, “
An Algorithm for Diagnosis of Proton Exchange Membrane Fuel Cells by Electrochemical Impedance Spectroscopy
,”
Electrochim. Acta
,
135
(1), pp.
368
379
.
You do not currently have access to this content.