Hydrogen is a resource that provides energy and forms water only after reacting with oxygen. Among the many hydrogen generation systems, solid oxide electrolysis cells (SOECs) have attracted considerable attention as advanced water electrolysis systems because of their high energy conversion efficiency and low use of electrical energy. To find the relationship between operating conditions and the performance of SOECs, research has been conducted both experimentally, using actual SOECs, and numerically, using computational fluid dynamics (CFD). In this investigation, we developed a 3D simulation model to analyze the relationship between the operating conditions and the overall behavior of SOECs due to different contributions to the overpotential. Simulations were performed with various inlet gas compositions of cathode and anode, cathode thickness, and electrode porosity to identify the main parameters related to performance.

References

1.
O'Brien
,
J. E.
,
McKellar
,
M. G.
,
Harvego
,
E. A.
, and
Stoots
,
C. M.
,
2010
, “
High-Temperature Electrolysis for Large-Scale Hydrogen and Syngas Production From Nuclear Energy—Summary of System Simulation and Economic Analyses
,”
Int. J. Hydrogen Energy
,
35
(
10
), pp.
4808
4819
.
2.
Ni
,
M.
,
2009
, “
Computational Fluid Dynamics Modeling of a Solid Oxide Electrolyzer Cell for Hydrogen Production
,”
Int. J. Hydrogen Energy
,
34
(
18
), pp.
7795
7806
.
3.
Hawkes
,
G.
,
O'Brien
,
J.
,
Stoots
,
C.
, and
Hawkes
,
B.
,
2009
, “
3D CFD Model of a Multi-Cell High-Temperature Electrolysis Stack
,”
Int. J. Hydrogen Energy
,
34
(
9
), pp.
4189
4197
.
4.
Colpan
,
C. O.
,
Dincer
,
I.
, and
Hamdullahpur
,
F.
,
2007
, “
Thermodynamic Modeling of Direct Internal Reforming Solid Oxide Fuel Cells Operating With Syngas
,”
Int. J. Hydrogen Energy
,
32
(
7
), pp.
787
795
.
5.
Ni
,
M.
,
2012
, “
2D Thermal Modeling of a Solid Oxide Electrolyzer Cell (SOEC) for Syngas Production by H2O/CO2 Co-Electrolysis
,”
Int. J. Hydrogen Energy
,
37
(
8
), pp.
6389
6399
.
6.
Eiji
,
H.
,
Takashi
,
O.
,
Kentaro
,
M.
,
Kotaro
,
N.
,
Seiji
,
F.
, and
Shigeo
,
K.
,
2006
, “
Simulation Modeling of a Tubular-Type Solid Oxide Electrolysis Cell for Hydrogen Production in a Nuclear Power Plant
,” 2006 International Congress on Advances in Nuclear Power Plants (ICAPP'06), Reno, NV, June 4–8, pp.
2287
2294
.
7.
Deseure
,
J.
,
Klein
,
J.-M.
,
Bultel
,
Y.
, and
Dessemond
,
L.
,
2007
, “
3-D Simulations of Charge and Mass Distribution in Tubular SOEC
,”
ECS Trans.
,
7
(
1
), pp.
2031
2039
.
8.
Hawkes
,
G. L.
,
O'Brien
,
J. E.
,
Stoots
,
C. M.
,
Herring
,
J. S.
, and
Shahnam
,
M.
,
2007
, “
Computational Fluid Dynamics Model of a Planar Solid-Oxide Electrolysis Cell for Hydrogen Production From Nuclear Energy
,”
Nucl. Technol.
,
158
(
2
), pp.
132
144
.
9.
Park
,
J.
,
Kim
,
Y.-M.
, and
Bae
,
J.
,
2011
, “
Electrochemical Simulation Using Material Properties of a Ceramic Electrode and Electrolyte
,”
Curr. Appl. Phys.
,
11
(
1
), pp.
S219
S222
.
10.
Park
,
J.
,
Li
,
P. W.
, and
Bae
,
J.
,
2012
, “
Analysis of Chemical, Electrochemical Reactions and Thermo-Fluid Flow in Methane-Feed Internal Reforming SOFCs: Part I—Modeling and Effect of Gas Concentrations
,”
Int. J. Hydrogen Energy
,
37
(
10
), pp.
8512
8531
.
11.
Park
,
J.
,
Li
,
P. W.
, and
Bae
,
J.
,
2012
, “
Analysis of Chemical, Electrochemical Reactions and Thermo-Fluid Flow in Methane-Feed Internal Reforming SOFCs: Part II—Temperature Effect
,”
Int. J. Hydrogen Energy
,
37
(
10
), pp.
8532
8555
.
12.
Chan
,
S. H.
,
Khor
,
K. A.
, and
Xia
,
Z. T.
,
2001
, “
A Complete Polarization Model of a Solid Oxide Fuel Cell and Its Sensitivity to the Change of Cell Component Thickness
,”
J. Power Sources
,
93
(
1–2
), pp.
130
140
.
13.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
2007
,
Transport Phenomena
,
Wiley
, Hoboken, NY, pp.
513
538
.
14.
Costamagna
,
P.
, and
Honegger
,
K.
,
1998
, “
Modeling of Solid Oxide Heat Exchanger Integrated Stacks and Simulation at High Fuel Utilization
,”
J. Electrochem. Soc.
,
145
(
11
), pp.
3995
4007
.
15.
Aguiar
,
P.
,
Adjiman
,
C. S.
, and
Brandon
,
N. P.
,
2004
, “
Anode-Supported Intermediate Temperature Direct Internal Reforming Solid Oxide Fuel Cell. I: Model-Based Steady-State Performance
,”
J. Power Sources
,
138
(
1–2
), pp.
120
136
.
16.
Ebbesen
,
S. D.
,
Graves
,
C.
, and
Mogensen
,
M.
,
2009
, “
Production of Synthetic Fuels by Co-Electrolysis of Steam and Carbon Dioxide
,”
Int. J. Green Energy
,
6
(
6
), pp.
646
660
.
17.
Yoon
,
K. J.
,
Lee
,
S.-I.
,
An
,
H.
,
Kim
,
J.
,
Son
,
J.-W.
,
Lee
,
J.-H.
,
Je
,
H.-J.
,
Lee
,
H.-W.
, and
Kim
,
B.-K.
,
2014
, “
Gas Transport in Hydrogen Electrode of Solid Oxide Regenerative Fuel Cells for Power Generation and Hydrogen Production
,”
Int. J. Hydrogen Energy
,
39
(
8
), pp.
3868
3878
.
18.
Kim-Lohsoontorn
,
P.
, and
Bae
,
J.
,
2011
, “
Electrochemical Performance of Solid Oxide Electrolysis Cell Electrodes Under High-Temperature Coelectrolysis of Steam and Carbon Dioxide
,”
J. Power Sources
,
196
(
17
), pp.
7161
7168
.
19.
Kim-Lohsoontorn
,
P.
,
Kim
,
Y.-M.
,
Laosiripojana
,
N.
, and
Bae
,
J.
,
2011
, “
Gadolinium Doped Ceria-Impregnated Nickel–Yttria Stabilised Zirconia Cathode for Solid Oxide Electrolysis Cell
,”
Int. J. Hydrogen Energy
,
36
(
16
), pp.
9420
9427
.
You do not currently have access to this content.