Abstract

Motivated by current gaps in uncertain control co-design (UCCD) literature, this brief is focused on some of the implementation of these formulations, with an emphasis on optimal control structures, and uncertainty propagation techniques. Specifically, we propose three optimal control structures for UCCD problems: (i) open-loop multiple-control (OLMC), (ii) multistage control (MSC), and (iii) open-loop single-control (OLSC). Stochastic in expectation UCCD (SE-UCCD) and worst-case robust UCCD (WCR-UCCD) formulations are implemented for a simplified strain-actuated solar array case study. Solutions to the OLMC SE-UCCD problem are obtained using generalized Polynomial Chaos (gPC) expansion and Monte Carlo simulation (MCS). The OLMC and MSC WCR-UCCD problems are solved by leveraging the structure of the linear program, leading to polytopic uncertainties. Insights gained underscore the role of the control structure and UCCD formulations in managing the tradeoffs between risk and performance.

References

1.
Azad
,
S.
, and
Herber
,
D. R.
,
2023
, “
An Overview of Uncertain Control co-Design Formulations
,”
ASME J. Mech. Des.
,
145
(
9
), pp.
1
20
.10.1115/1.4062753
2.
Nakka
,
Y. K.
, and
Chung
,
S.-J.
,
2023
, “
Trajectory Optimization of Chance-Constrained Nonlinear Stochastic Systems for Motion Planning Under Uncertainty
,”
IEEE Trans. Rob.
,
39
(
1
), pp.
203
222
.10.1109/TRO.2022.3197072
3.
Lucia
,
S.
,
Tătulea-Codrean
,
A.
,
Schoppmeyer
,
C.
, and
Engell
,
S.
,
2017
, “
Rapid Development of Modular and Sustainable Nonlinear Model Predictive Control Solutions
,”
Control Eng. Pract.
,
60
, pp.
51
62
.10.1016/j.conengprac.2016.12.009
4.
Diehl
,
M.
,
Gerhard
,
J.
,
Marquardt
,
W.
, and
Mönnigmann
,
M.
,
2008
, “
Numerical Solution Approaches for Robust Nonlinear Optimal Control Problems
,”
Comput. Chem. Eng.
,
32
(
6
), pp.
1279
1292
.10.1016/j.compchemeng.2007.06.002
5.
Azad
,
S.
, and
Herber
,
D. R.
,
2022
, “
Investigations into Uncertain Control Co-Design Implementations for Stochastic in Expectation and Worst-Case Robust
,”
ASME
Paper No. IMECE2022-95229.10.1115/IMECE2022-95229
6.
Herber
,
D. R.
, and
Allison
,
J. T.
,
2017
, “
Unified Scaling of Dynamic Optimization Design Formulations
,”
ASME
Paper No. DETC2017-67676.10.1115/DETC2017-67676
7.
Chilan
,
C. M.
,
Herber
,
D. R.
,
Nakka
,
Y. K.
,
Chung
,
S.-J.
,
Allison
,
J. T.
,
Aldrich
,
J. B.
, and
Alvarez-Salazar
,
O. S.
,
2017
, “
Co-Design of Strain-Actuated Solar Arrays for Spacecraft Precision Pointing and Jitter Reduction
,”
AIAA J.
,
55
(
9
), pp.
3180
3195
.10.2514/1.J055748
8.
Herber
,
D. R.
, and
Allison
,
J. T.
,
2019
, “
Nested and Simultaneous Solution Strategies for General Combined Plant and Control Design Problems
,”
ASME J. Mech. Des.
,
141
(
1
), p.
011402
.10.1115/1.4040705
9.
Azad
,
S.
, and
Alexander-Ramos
,
M. J.
,
2020
, “
A Single-Loop Reliability-Based MDSDO Formulation for Combined Design and Control Optimization of Stochastic Dynamic Systems
,”
ASME J. Mech. Des.
,
143
(
2
), p.
021703
.10.1115/1.4047870
10.
Azad
,
S.
, and
Alexander-Ramos
,
M. J.
,
2021
, “
Robust Combined Design and Control Optimization of Hybrid-Electric Vehicles Using MDSDO
,”
IEEE Trans. Veh. Technol.
,
70
(
5
), pp.
4139
4152
.10.1109/TVT.2021.3071863
11.
Cottrill
,
G. C.
,
2012
, “
Hybrid Solution of Stochastic Optimal Control Problems Using Gauss Pseudospectral Method and Generalized Polynomial Chaos Algorithms
,”
Ph.D. thesis
,
Air Force Institute of Technology
, Wright-Patterson AFB, OH.https://scholar.afit.edu/cgi/viewcontent.cgi?article=2040&context=etd
12.
Meyers
,
J. J.
,
Leonard
,
A. M.
,
Rogers
,
J. D.
, and
Gerlach
,
A. R.
,
2019
, “
Koopman Operator Approach to Optimal Control Selection Under Uncertainty
,”
American Control Conference (ACC)
, Philadelphia, PA, July 10--12, pp. 2964–2971.10.23919/ACC.2019.8814461
13.
Nash
,
A. L.
,
Pangborn
,
H. C.
, and
Jain
,
N.
,
2021
, “
Robust Control co-Design With Receding-Horizon MPC
,” American Control Conference (
ACC
), New Orleans, LA, May 25–28, pp.
373
379
.10.23919/ACC50511.2021.9483216
14.
Fisher
,
J.
, and
Bhattacharya
,
R.
,
2011
, “
Optimal Trajectory Generation With Probabilistic System Uncertainty Using Polynomial Chaos
,”
ASME J. Dyn. Syst. Meas. Control
,
133
(
1
), p.
014501
.10.1115/1.4002705
15.
Azad
,
S.
,
2020
, “
Combined Design and Control Optimization of Stochastic Dynamic Systems
,”
Ph.D. thesis
,
University of Cincinnati
, Cincinnati, OH.https://www.anilvrao.com/Publications/ConferencePublications/trajectorySurveyAAS.pdf
16.
Rao
,
A. V.
,
2009
, “
A Survey of Numerical Methods for Optimal Control
,”
Adv. Astronaut. Sci.
,
135
(
1
), pp.
497
528
.https://www.anilvrao.com/Publications/ConferencePublications/trajectorySurveyAAS.pdf
17.
Kelly
,
M.
,
2017
, “
An Introduction to Trajectory Optimization: How to Do Your Own Direct Collocation
,”
SIAM Rev.
,
59
(
4
), pp.
849
904
.10.1137/16M1062569
18.
Biegler
,
L. T.
,
2010
,
Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes
,
Siam
, Philadelphia, PA.
19.
Herber
,
D. R.
,
2017
, “
Advances in Combined Architecture, Plant, and Control Design
,” Ph.D. thesis,
University of Illinois at Urbana-Champaign
, Champaign, IL.
20.
Herber, D. R., 2022, DTQP Project
, GitHub, San Francisco, CA, accessed Mar. 17, 2025, https://github.com/danielrherber/dt-qp-project
21.
Azad, S, 2023, “Uncertain-Control-Co-Design-SASA-Example,” GitHub, San Francisco, CA, accessed Mar. 17, 2025, https://github.com/AzadSaeed/uncertain-control-co-design-SASA-example/releases/tag/Journal_sub
22.
Azad
,
S.
, and
Herber
,
D. R.
,
2024
, “
A Case Study Comparing Both Stochastic and Worst-Case Robust Control co-Design Under Different Control Structures
,”
arXiv:
2405.20496.10.48550/arXiv.2405.20496
You do not currently have access to this content.