Abstract

Robust methods for viscosity measurement in situ are needed in many industrial applications. In this work, we developed a method to capitalize on the strong signal-to-noise ratio imparted by continuous-wave (CW) ultrasound echoed through a medium between two piezoelectric transducers. An optimization algorithm was developed to solve the inverse problem of extracting medium viscosity by optimizing the parameters of a model for the compound wave sensed by one of the transducers. Numerical constraints and parameter initialization techniques were designed to enhance algorithm convergence. The resulting measurement method was validated with a variety of materials, including lubricants at various temperatures, and compared against standard viscometers. The measurement precision was <1% and correlation coefficient (r) with standard reference or instruments was >0.95. Room temperature measurements were accurate within 5% across a broad range (101–105 cP) of viscosities. Furthermore, it showed advantage over another acoustic method in accuracy for high viscosity measurement. The methodology allows continuous measurement of viscosity in situ with simple rugged hardware, which is needed for process monitoring and control in numerous applications.

References

1.
Markova
,
L. V.
,
Myshkin
,
N. K.
,
Kong
,
H.
, and
Han
,
H. G.
,
2011
, “
On-Line Acoustic Viscometry in Oil Condition Monitoring
,”
Tribol. Int.
,
44
(
9
), pp.
963
970
.10.1016/j.triboint.2011.03.018
2.
Rueda
,
M. M.
,
Auscher
,
M. C.
,
Fulchiron
,
R.
,
Périé
,
T.
,
Martin
,
G.
,
Sonntag
,
P.
, and
Cassagnau
,
P.
,
2017
, “
Rheology and Applications of Highly Filled Polymers: A Review of Current Understanding
,”
Prog. Polym. Sci.
,
66
, pp.
22
53
.10.1016/j.progpolymsci.2016.12.007
3.
Elliott
,
J. P.
,
McConaha
,
J.
,
Cornish
,
N.
,
Bunk
,
E.
,
Hilton
,
L.
,
Modany
,
A.
, and
Bucker
,
I.
,
2014
, “
Influence of Viscosity and Consumer Use on Accuracy of Oral Medication Dosing Devices
,”
J. Pharm. Technol.
,
30
, p.
111
.10.1177/8755122514533780
4.
Hassan
,
D. S.
, and
Hasary
,
H. J.
,
2023
, “
The Impact of Viscosity on the Dissolution of Naproxen Immediate-Release Tablets
,”
J. Taibah Univ. Med. Sci.
,
18
(
4
), pp.
687
695
.10.1016/j.jtumed.2022.12.009
5.
Jia
,
X. Q.
,
Chu
,
Q.
,
Zhu
,
Z. C.
,
Ding
,
Q.
, and
Gao
,
P.
,
2022
, “
Influence of Fluid Food Viscosity on Internal Flow Characteristics of Conveying Pump
,”
Front. Nutr.
,
9
, p. 910589.10.3389/fnut.2022.910589
6.
Deblais
,
A.
,
Hollander
,
E. D.
,
Boucon
,
C.
,
Blok
,
A. E.
,
Veltkamp
,
B.
,
Voudouris
,
P.
,
Versluis
,
P.
,
et al.
,
2021
, “
Predicting Thickness Perception of Liquid Food Products From Their Non-Newtonian Rheology
,”
Nat. Commun.
,
12
(
1
), pp. 1--7.10.1038/s41467-021-26687-w
7.
Cullen
,
P. J.
,
Duffy
,
A. P.
,
O'Donnell
,
C. P.
, and
O'Callaghan
,
D. J.
,
2000
, “
Process viscometry for the food industry
,”
Trends Food Sci. Technol.
,
11
(
12
), pp.
451
457
.10.1016/S0924-2244(01)00034-6
8.
Gertz
,
M. A.
,
2018
, “
Acute Hyperviscosity: Syndromes and Management
,”
Blood
,
132
(
13
), pp.
1379
1385
.10.1182/blood-2018-06-846816
9.
Sloop
,
G. D.
,
Pop
,
G.
,
Weidman
,
J. J.
, and
St. Cyr
,
J. A.
,
2022
, “
COVID-19 Demonstrates That Inflammation Is a Hyperviscous State
,”
Cureus
,
14
(
10
), p. e30603.10.7759/cureus.30603
10.
J. P.
Reid
,
A. K.
Bertram
,
D. O.
Topping
,
A.
Laskin
,
S. T.
Martin
,
M. D.
Petters
,
F. D.
Pope
,
G.
Rovelli
,
2018
, “
The Viscosity of Atmospherically Relevant Organic Particles
,”
Nat. Commun.
9
(
1)
, pp.
1
14
.10.1038/s41467-018-03027-z
11.
Chevrel
,
M. O.
,
Pinkerton
,
H.
, and
Harris
,
A. J. L.
,
2019
, “
Measuring the Viscosity of Lava in the Field: A Review
,”
Earth Sci. Rev.
,
196
, p.
102852
.10.1016/j.earscirev.2019.04.024
12.
Mastromarino
,
S.
,
Rook
,
R.
,
De Haas
,
D.
,
Verschuur
,
E. D. J.
,
Rohde
,
M.
, and
Kloosterman
,
J. L.
,
2021
, “
An Ultrasonic Shear Wave Viscometer for Low Viscosity Newtonian Liquids
,”
Meas. Sci. Technol.
,
32
(
12
), p.
125305
.10.1088/1361-6501/ac200f
13.
Kazys
,
R.
,
Mazeika
,
L.
,
Sliteris
,
R.
, and
Raisutis
,
R.
,
2014
, “
Measurement of Viscosity of Highly Viscous Non-Newtonian Fluids by Means of Ultrasonic Guided Waves
,”
Ultrasonics
,
54
(
4
), pp.
1104
1112
.10.1016/j.ultras.2014.01.007
14.
Franco
,
E. E.
, and
Buiochi
,
F.
,
2019
, “
Ultrasonic Measurement of Viscosity: Signal Processing Methodologies
,”
Ultrasonics
,
91
, pp.
213
219
.10.1016/j.ultras.2018.08.006
15.
Yenuganti
,
S.
,
Zhang
,
C.
, and
Zhang
,
H.
,
2019
, “
Quartz Crystal Microbalance for Viscosity Measurement With Temperature Self-Compensation
,”
Mechatronics
,
59
, pp.
189
198
.10.1016/j.mechatronics.2019.04.005
16.
Kiełczyński
,
P.
,
Szalewski
,
M.
,
Balcerzak
,
A.
,
Rostocki
,
A. J.
, and
Tefelski
,
D. B.
,
2011
, “
Application of SH Surface Acoustic Waves for Measuring the Viscosity of Liquids in Function of Pressure and Temperature
,”
Ultrasonics
,
51
(
8
), pp.
921
924
.10.1016/j.ultras.2011.05.006
17.
Heinisch
,
M.
,
Abdallah
,
A.
,
Dufour
,
I.
, and
Jakoby
,
B.
,
2014
, “
Resonant Steel Tuning Forks for Precise Inline Viscosity and Mass Density Measurements in Harsh Environments
,”
Procedia Eng.
,
87
, pp.
1139
1142
.10.1016/j.proeng.2014.11.366
18.
Wang
,
J.
,
Zhao
,
Y.
,
Dong
,
X.
,
Wang
,
F.
,
Li
,
H.
,
Zhong
,
Q.
,
Yao
,
X.
, and
Gong
,
M.
,
2020
, “
A Vibrating-Wire Viscometer and Measured Viscosity Data of Compressed Liquid Carbon Dioxide at Temperatures From 218.150 to 273.150 K and Pressures Up to 13 MPa
,”
J. Mol. Liq.
,
310
, p.
113208
.10.1016/j.molliq.2020.113208
19.
Singh
,
P.
,
Sharma
,
K.
,
Puchades
,
I.
, and
Agarwal
,
P. B.
,
2022
, “
A Comprehensive Review on MEMS-Based Viscometers
,”
Sens. Actuators A Phys.
,
338
, p.
113456
.10.1016/j.sna.2022.113456
20.
Pop
,
G. A. M.
,
Bisschops
,
L. L. A.
,
Iliev
,
B.
,
Struijk
,
P. C.
,
van der Hoeven
,
J. G.
, and
Hoedemaekers
,
C. W. E.
,
2013
, “
On-Line Blood Viscosity Monitoring in vivo With a Central Venous Catheter, Using Electrical Impedance Technique
,”
Biosens. Bioelectron.
,
41
, pp.
595
601
.10.1016/j.bios.2012.09.033
21.
Avril
,
S.
,
Huntley
,
J. M.
, and
Cusack
,
R.
,
2009
, “
in vivo Measurements of Blood Viscosity and Wall Stiffness in the Carotid Using PC-MRI
,”
Eur. J. Comput. Mech.
,
18
(
1
), pp.
9
20
.10.3166/ejcm.18.9-20
22.
Schmidt
,
A.
,
Da Silva
,
T.
,
Pazin-Filho
,
A.
,
Murta
,
L. O.
,
Almeida-Filho
,
O. C.
,
Gallo
,
L.
,
Marin-Neto
,
J. A.
, and
Maciel
,
B. C.
,
2008
, “
Effects of Changing Blood Viscosity and Heart Rate on Vena Contracta Width as Evaluated By Color Doppler Flow Mapping. An in Vitro Study with a Pulsatile Flow Model
,”
Echocardiography
,
25
(
2
), pp.
133
140
.10.1111/j.1540-8175.2007.00561.x
23.
Shih
,
C. H.
,
Chang
,
C. C.
,
Liu
,
C. Y.
, and
Wu
,
H. C.
,
2021
, “
The Centrifugal Viscometer
,”
Biomicrofluidics
,
15
(
5
), p.
54101
.10.1063/5.0060908
24.
A. Nour
,
M.
, and
M. Hussain
,
M.
,
2020
, “
A Review of the Real-Time Monitoring of Fluid-Properties in Tubular Architectures for Industrial Applications
,”
Sensors (Basel)
,
20
(
14
), p.
3907
.10.3390/s20143907
25.
Antlinger
,
H.
,
Clara
,
S.
,
Beigelbeck
,
R.
,
Cerimovic
,
S.
,
Keplinger
,
F.
, and
Jakoby
,
B.
,
2013
, “
An Acoustic Transmission Sensor for the Longitudinal Viscosity of Fluids
,”
Sens. Actuators A Phys.
,
202
, pp.
23
29
.10.1016/j.sna.2013.03.011
26.
Cakmak
,
O.
,
Ermek
,
E.
,
Kilinc
,
N.
,
Yaralioglu
,
G. G.
, and
Urey
,
H.
,
2015
, “
Precision Density and Viscosity Measurement Using Two Cantilevers with Different Widths
,”
Sens. Actuators A Phys.
,
232
, pp.
141
147
.10.1016/j.sna.2015.05.024
27.
Francis
,
L. A.
,
Friedt
,
J.-M.
,
Zhou
,
C.
, and
Bertrand
,
P.
,
2006
, “
In Situ Evaluation of Density, Viscosity, and Thickness of Adsorbed Soft Layers by Combined Surface Acoustic Wave and Surface Plasmon Resonance
,”
Anal. Chem.
,
78
(
12
), pp.
4200
4209
.10.1021/ac051233h
28.
Natarajan
,
S.
,
Singh
,
R. S.
,
Lee
,
M.
,
Cox
,
B. P.
,
Culjat
,
M. O.
,
Grundfest
,
W. S.
, and
Lee
,
H.
,
2010
, “
Accurate Step-FMCW Ultrasound Ranging and Comparison With Pulse-Echo Signaling Methods
,” SPIE Paper No. 7629.
29.
Sinha
,
D. N.
,
1998
, “
Noninvasive Identification of Fluids by Swept-Frequency Acoustic Interferometry,” Patent No. 5,767,407
.
30.
Starkoff
,
B.
,
2014
, “
Ultrasound Physical Principles in Today's Technology
,”
Aust. J. Ultrasound. Med.
,
17
(
1
), pp.
4
10
.10.1002/j.2205-0140.2014.tb00086.x
31.
Salvi
,
N.
, and
Tan
,
J.
,
2022
, “
A Continuous-Wave Method for Sound Speed Measurement Based on an Infinite-Echo Model
,”
Measurement
,
194
, p.
111038
.10.1016/j.measurement.2022.111038
32.
Sinha
,
D. N.
, and
Kaduchak
,
G.
,
2001
, “
Noninvasive Determination of Sound Speed and Attenuation in Liquids
,”
Experimental Methods in the Physical Sciences
,
Academic Press
, Cambridge, MA, pp.
307
333
.
33.
Deblock
,
Y.
,
Campistron
,
P.
, and
Nongaillard
,
B.
,
2005
, “
A Continuous Wave Method for Ultrasonic Characterization of Liquid Materials
,”
J. Acoust. Soc. Am.
,
118
(
3
), pp.
1388
1393
.10.1121/1.2000771
34.
Gonzalez
,
C. A.
, and
Choquette
,
S.
,
2016
, “
Certificate of Analysis
,” Standard Reference Material® 2772,
Gaithersburg, MD
.
35.
Takamura
,
K.
,
Fischer
,
H.
, and
Morrow
,
N. R.
,
2012
, “
Physical Properties of Aqueous Glycerol Solutions
,”
J. Pet. Sci. Eng.
,
98-99
, pp.
50
60
.10.1016/j.petrol.2012.09.003
You do not currently have access to this content.