Abstract

Vibration suppression is important for high-precision motion control because positioning accuracy is an essential figure of merit for a servosystem. The paper presents a vibration-suppression method based on improved adaptive optimal arbitrary-time-delay (IAOAT) input shaping. First, analyzing a conventional optimal-arbitrary-time-delay (OAT) input shaper yields an OAT input shaper with five pulses that completely suppresses two-mode vibrations when the natural frequency and damping ratio are exactly known. Next, embedding an adaptive algorithm in the shaper gives a conventional adaptive optimal arbitrary-time-delay (AOAT) input shaper that handles unknown natural frequencies and damping ratios. Note that the conventional AOAT input shaper contains five pulses that have to be updated, but the delay times of the pulses are prescribed. Then, the IAOAT method extends the symmetry of pulse amplitudes for zero damping ratio to a nonzero case and reduces the number of pulses to three. A recursive-least-squares (RLS) algorithm is devised to update these parameters. This shaper features the smallest number of parameters and high robust performance. Finally, comparisons with other input-shaping methods show the effectiveness and superiority of the developed method over others.

References

1.
Sheng
,
H.
,
He
,
M.-X.
,
Zhao
,
J.
,
Kam
,
C. T.
,
Ding
,
Q.
, and
Lee
,
H. P.
,
2023
, “
The ABH-Based Lattice Structure for Load Bearing and Vibration Suppression
,”
Int. J. Mech. Sci.
,
252
, p.
108378
.10.1016/j.ijmecsci.2023.108378
2.
Jin
,
Y.
,
Jia
,
X.-Y.
,
Wu
,
Q.-Q.
,
Yu
,
G.-C.
,
Zhang
,
X.-L.
,
Chen
,
S.
, and
Wu
,
L.-Z.
,
2022
, “
Design of Cylindrical Honeycomb Sandwich Meta-Structures for Vibration Suppression
,”
Mech. Syst. Signal Process.
,
163
, p.
108075
.10.1016/j.ymssp.2021.108075
3.
Wang
,
W.
,
Hu
,
C.
,
Zhou
,
K.
, and
Wang
,
Z.
,
2023
, “
Time Parameter Mapping and Contour Error Precompensation for Multiaxis Input Shaping
,”
IEEE Trans. Ind. Inf.
,
19
(
3
), pp.
2640
2651
.10.1109/TII.2022.3158960
4.
Yu
,
H.
,
Liu
,
X.
,
Cai
,
G.-P.
,
Zhou
,
X.-B.
, and
Du
,
D.
,
2024
, “
Active Vibration Control of a Large Space Telescope Based on H∞ Control With Unilateral and Constrained Input
,”
J. Franklin Inst.
,
361
(
12
), p.
107029
.10.1016/j.jfranklin.2024.107029
5.
Zhou
,
X.
,
Wang
,
H.
, and
Tian
,
Y.
,
2022
, “
Adaptive Boundary Iterative Learning Vibration Control Using Disturbance Observers for a Rigid–Flexible Manipulator System With Distributed Disturbances and Input Constraints
,”
J. Vib. Control
,
28
(
11–12
), pp.
1324
1340
.10.1177/1077546321990151
6.
Jin
,
X.
,
Wang
,
J.
,
Yan
,
Z.
,
Xu
,
L.
,
Yin
,
G.
, and
Chen
,
N.
,
2022
, “
Robust Vibration Control for Active Suspension System of in-Wheel-Motor-Driven Electric Vehicle Via μ-Synthesis Methodology
,”
ASME J. Dyn. Syst., Meas., Control
,
144
(
5
), p.
051007
.10.1115/1.4053661
7.
Boscariol
,
P.
,
Richiedei
,
D.
, and
Tamellin
,
I.
,
2022
, “
Residual Vibration Suppression in Uncertain Systems: A Robust Structural Modification Approach to Trajectory Planning
,”
Rob. Comput.-Integr. Manuf.
,
74
, p.
102282
.10.1016/j.rcim.2021.102282
8.
Li
,
Q.
,
Xu
,
Q.
, and
Wu
,
R.
,
2016
, “
Low-Frequency Vibration Suppression Control in a Two-Mass System by Using a Torque Feed-Forward and Disturbance Torque Observer
,”
J. Power Electron.
,
16
(
1
), pp.
249
258
.10.6113/JPE.2016.16.1.249
9.
Rodriguez
,
J.
,
Collet
,
M.
, and
Chesné
,
S.
,
2022
, “
Active Vibration Control on a Smart Composite Structure Using Modal-Shaped Sliding Mode Control
,”
ASME J. Vib. Acoust.
,
144
(
2
), p.
021013
.10.1115/1.4053358
10.
Dautt-Silva
,
A.
, and
de Calafon
,
R. A.
,
2022
, “
Input Shaping for Feed-Forward Control of Cable-Driven Parallel Robots
,”
ASME J. Dyn. Syst., Meas., Control
,
144
(
4
), p.
044503
.10.1115/1.4053188
11.
Smith
,
O. J.
,
1957
, “
Posicast Control of Damped Oscillatory Systems
,”
Proc. IRE
,
45
(
9
), pp.
1249
1255
.10.1109/JRPROC.1957.278530
12.
Singer
,
N. C.
, and
Seering
,
W. P.
,
1990
, “
Preshaping Command Inputs to Reduce System Vibration
,”
ASME J. Dyn. Syst., Meas., Control
,
112
(
1
), pp.
76
82
.10.1115/1.2894142
13.
Ha
,
C.-W.
,
Lee
,
D.
,
Rew
,
K.-H.
, and
Kim
,
K.-S.
,
2018
, “
An Impulse-Time Perturbation Approach for a Symmetric Extra-Insensitive Input Shaper
,”
Int. J. Control, Autom. Syst.
,
16
(
3
), pp.
1239
1246
.10.1007/s12555-017-0045-y
14.
Ghorbani
,
H.
,
Alipour
,
K.
,
Tarvirdizadeh
,
B.
, and
Hadi
,
A.
,
2019
, “
Comparison of Various Input Shaping Methods in Rest-to-Rest Motion of the End-Effecter of a Rigid-Flexible Robotic System With Large Deformations Capability
,”
Mech. Syst. Signal Process.
,
118
, pp.
584
602
.10.1016/j.ymssp.2018.09.003
15.
Kim
,
J.
, and
Croft
,
E. A.
,
2018
, “
Preshaping Input Trajectories of Industrial Robots for Vibration Suppression
,”
Rob. Comput.-Integr. Manuf.
,
54
, pp.
35
44
.10.1016/j.rcim.2018.05.009
16.
Magee
,
D. P.
, and
Book
,
W. J.
,
1995
, “
Filtering Micro-Manipulator Wrist Commands to Prevent Flexible Base Motion
,”
Proceedings of 1995 American Control Conference-ACC’95
, Seattle, WA, June 21–23, pp.
924
928
.10.1109/ACC.1995.529383
17.
Shoyer
,
K.
,
Nakahara
,
K.
, and
Cha
,
P. D.
,
2022
, “
Sensitivity Analysis of Suppressing Vibration by Inducing a Node on a Harmonically Forced Euler–Bernoulli Beam
,”
ASME J. Vib. Acoust.
,
144
(
2
), p.
021015
.10.1115/1.4053588
18.
Tzes
,
A.
, and
Yurkovich
,
S.
,
1993
, “
An Adaptive Input Shaping Control Scheme for Vibration Suppression in Slewing Flexible Structures
,”
IEEE Trans. Control Syst. Technol.
,
1
(
2
), pp.
114
121
.10.1109/87.238404
19.
Cole
,
M. O.
,
2011
, “
A Discrete-Time Approach to Impulse-Based Adaptive Input Shaping for Motion Control Without Residual Vibration
,”
Automatica
,
47
(
11
), pp.
2504
2510
.10.1016/j.automatica.2011.08.039
20.
Abdullahi
,
A. M.
,
Mohamed
,
Z.
,
Selamat
,
H.
,
Pota
,
H. R.
,
Abidin
,
M. Z.
,
Ismail
,
F.
, and
Haruna
,
A.
,
2018
, “
Adaptive Output-Based Command Shaping for Sway Control of a 3d Overhead Crane With Payload Hoisting and Wind Disturbance
,”
Mech. Syst. Signal Process.
,
98
, pp.
157
172
.10.1016/j.ymssp.2017.04.034
21.
Pilbauer
,
D.
,
Michiels
,
W.
, and
Vyhlídal
,
T.
,
2017
, “
Distributed Delay Input Shaper Design by Optimizing Smooth Kernel Functions
,”
J. Franklin Inst.
,
354
(
13
), pp.
5463
5485
.10.1016/j.jfranklin.2017.06.002
22.
Park
,
J.
,
Chang
,
P.-H.
,
Park
,
H.-S.
, and
Lee
,
E.
,
2006
, “
Design of Learning Input Shaping Technique for Residual Vibration Suppression in an Industrial Robot
,”
IEEE/ASME Trans. Mechatron.
,
11
(
1
), pp.
55
65
.10.1109/TMECH.2005.863365
23.
Magee
,
D. P.
, and
Book
,
W. J.
,
1998
, “
Optimal Filtering to Minimize the Elastic Behavior in Serial Link Manipulators
,”
Proceedings of the 1998 American Control Conference
, Philadelphia, PA, June 24–26, pp.
2637
2642
.10.1109/ACC.1998.688327
24.
Vaughan
,
J.
,
Yano
,
A.
, and
Singhose
,
W.
,
2008
, “
Comparison of Robust Input Shapers
,”
J. Sound Vib.
,
315
(
4–5
), pp.
797
815
.10.1016/j.jsv.2008.02.032
25.
Haykin
,
S.
,
2005
,
Adaptive Filter Theory
,
Pearson
,
London
.
26.
Xie
,
X.
,
Ren
,
M.
,
Zheng
,
H.
, and
Zhang
,
Z.
,
2021
, “
Active Vibration Control of a Time-Varying Shafting System Using an Adaptive Algorithm With Online Auxiliary Filter Estimation
,”
J. Sound Vib.
,
513
, p.
116430
.10.1016/j.jsv.2021.116430
27.
Du
,
Y.
,
Wang
,
C.
,
Lu
,
J.
, and
Zhou
,
Y.
,
2019
, “
Vibration Suppression Using Multi-Impulse Robust Shaping Method of Zero Vibration and Derivative
,”
J. Sound Vib.
,
440
, pp.
277
290
.10.1016/j.jsv.2018.10.038
You do not currently have access to this content.