Abstract

As axial piston pumps (APP) become increasingly compact to meet the size, weight, and performance demands (high pressure ratings), they are prone to wear, and hence the leakage between the sliding parts, which run under tight tolerances. This leakage fault can degrade the pump's performance and limit its predictability and reliability. In this study, a simulation and mathematical model-based approach are presented to simulate the effect of increasing severity of leakage fault (increasing annular gap) in both single, and multiple cylinders simultaneously, on the pump performance. The Leakage is modeled as laminar flow past the uniform annular gap between the piston and cylinder. With a single faulty cylinder, as the wear (annular gap) increases the time-mean outlet flow and pressure of the pump remain constant until a critical threshold, and then reduce rapidly, leading to deterioration in the pump's volumetric efficiency. With increase in faulty cylinders this critical threshold shifts to lower magnitudes, and in the limit of more than four faulty cylinders this threshold saturates to a constant magnitude. The dynamic signal's data show that the increasing severity of leakage and increasing number of faulty cylinders modulate both the time signature and the amplitude fluctuations of the outlet pressure waveform due to the reduced flow in the discharge cycle. Further, FFT analysis of these dynamic signals, and the time-mean value of pressure and flow rate leakage fault diagnosis is presented to classify the pump's condition as either healthy or moderately faulty or severely faulty.

References

1.
Thomasnet
,
2021
, “
Pumps, Valves & Accessories Articles on Thomasnet
,”
accessed May 26, 2021, https://www.thomasnet.com/articles/pumps-valves-accessories/
2.
Haynes
,
J. M.
,
2007
, “
Axial Piston Pump Leakage Modelling and Measurement
,” The University of Cardiff, Cardiff, Whales, UK, accessed May 21, 2021, https://orca.cardiff.ac.uk/id/eprint/55178/
3.
Lasaar
,
R.
,
2000
, “
The Influence of the Microscopic and Macroscopic Gap Geometry on the Energy Dissipation in the Lubricating Gaps of Displacement Machines
,”
First Fluid Power Net International Ph.D. Symposium
,
Hamburg
, Germany, pp.
101
116
.https://www.researchgate.net/publication/242181566_The_influence_of_the_microscopic_and_macroscopic_gap_geometry_on_the_energy_dissipation_in_the_lubricating_gaps_of_displacement_machines
4.
Lasaar
,
R.
, and
Ivantysynova
,
M.
,
2001
, “
Gap Geometry Variations in Displacement Machines and Their Effect on the Energy Dissipation
,”
International Conference on Fluid Power Transmission and Control
,
Hangzhou, China
, Apr. 3–5, pp.
296
301
.
5.
Ivantysynova
,
M.
, and
Lasaar
,
R.
,
2004
, “An Investigation into Micro-and Macro Geometric Design of Piston/Cylinder Assembly of Swash Plate Machines,”
Int. J. Fluid Power,
5(1), pp. 23–36.10.1080/14399776.2004.10781181
6.
Tang
,
H.
,
Yang
,
W.
, and
Wang
,
Z.
,
2019
, “
A Model-Based Method for Leakage Detection of Piston Pump Under Variable Load Condition
,”
IEEE Access
,
7
, pp.
99771
99781
.10.1109/ACCESS.2019.2930816
7.
Li
,
Z.
,
2005
, “
Condition Monitoring of Axial Piston Pump
,” accessed 26 May, 2021, https://harvest.usask.ca/handle/10388/etd-11252005-202705
8.
Kumar
,
N.
,
Sarkar
,
B. K.
, and
Maity
,
S.
,
2019
, “
Leakage Based Condition Monitoring and Pressure Control of the Swashplate Axial Piston Pump
,”
ASME
Paper No. GTINDIA2019-2385.10.1115/GTINDIA2019-2385
9.
Zhang
,
C.
,
Huang
,
S.
,
Du
,
J.
,
Wang
,
X.
,
Wang
,
S.
, and
Zhang
,
H.
,
2016
, “
A New Dynamic Seven-Stage Model for Thickness Prediction of the Film Between Valve Plate and Cylinder Block in Axial Piston Pumps
,”
Adv. Mech. Eng
.10.1177/1687814016671446
10.
Bergada
,
J. M.
,
Kumar
,
S.
,
Davies
,
D. L.
, and
Watton
,
J.
,
2012
, “
A Complete Analysis of Axial Piston Pump Leakage and Output Flow Ripples
,”
Appl. Math. Modell.
,
36
(
4
), pp.
1731
1751
.10.1016/j.apm.2011.09.016
11.
Prakash
,
J.
,
Kankar
,
P. K.
, and
Miglani
,
A.
,
2021
, “
Monitoring the Degradation in the Switching Behavior of a Hydraulic Valve Using Recurrence Quantification Analysis and Fractal Dimensions
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
6
), p.
061010
.10.1115/1.4050821
12.
Wang
,
S.
, and
Xiang
,
J.
,
2020
, “
A Minimum Entropy Deconvolution-Enhanced Convolutional Neural Networks for Fault Diagnosis of Axial Piston Pumps
,”
Soft Comput.
,
24
(
4
), pp.
2983
2997
.10.1007/s00500-019-04076-2
13.
Wang
,
S.
,
Xiang
,
J.
,
Zhong
,
Y.
, and
Tang
,
H.
,
2018
, “
A Data Indicator-Based Deep Belief Networks to Detect Multiple Faults in Axial Piston Pumps
,”
Mech. Syst. Signal Process.
,
112
, pp.
154
170
.10.1016/j.ymssp.2018.04.038
14.
Yoder
,
V. A.
,
Singh
,
R.
,
Dreyer
,
J. T.
, and
Lilly
,
B.
,
2015
, “
Development of a Vibration-Based Health Monitoring Procedure Using a Virtual Axial Piston Pump
,” accessed May 26, 2021, http://hdl.handle.net/1811/86176
15.
Chen
,
H.
,
Chua
,
P.
, and
Lim
,
G.
,
2006
, “
Dynamic Vibration Analysis of a Swashplate Type Water Hydraulic Motor
,”
Mech. Mach. Theory
,
41
(
5
), pp.
487
504
.10.1016/j.mechmachtheory.2005.09.002
16.
Casoli
,
P.
,
Pastori
,
M.
,
Scolari
,
F.
, and
Rundo
,
M.
,
2019
, “
A Vibration Signal-Based Method for Fault Identification and Classification in Hydraulic Axial Piston Pumps
,”
Energies
,
12
(
5
), p.
953
.10.3390/en12050953
17.
Prakash
,
J.
, and
Kankar
,
P. K.
,
2020
, “
Health Prediction of Hydraulic Cooling Circuit Using Deep Neural Network With Ensemble Feature Ranking Technique
,”
Meas. J. Int. Meas. Confed.
,
151
, p.
107225
.10.1016/j.measurement.2019.107225
18.
Yin
,
F.
,
Nie
,
S.
,
Hou
,
W.
, and
Xiao
,
S.
,
2017
, “
Effect Analysis of Silencing Grooves on Pressure and Vibration Characteristics of Seawater Axial Piston Pump
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
231
(
8
), pp.
1390
1409
.10.1177/0954406216660334
19.
Kumar
,
S.
, and
Bergada
,
J. M.
,
2013
, “
The Effect of Piston Grooves Performance in an Axial Piston Pumps Via CFD Analysis
,”
Int. J. Mech. Sci.
,
66
, pp.
168
179
.10.1016/j.ijmecsci.2012.11.005
20.
Kundu
,
P. K.
,
Cohen
,
I. M.
, and
Dowling
,
D. R.
,
2012
,
Fluid Mechanics
, 5th ed.,
ScienceDirect, Academic Press
.10.1016/C2009-0-63410-3
21.
White
,
F. M.
,
1986
,
Fluid Mechanics
, 4th ed.,
McGraw-Hill
,
New York
.
22.
Ivantysyn
,
J.
, and
Ivantysynova
,
M.
,
2001
,
Hydrostatic Pumps and Motors
,
Academia Books International Publishers & Distributor
,
New Delhi, India
.
23.
Zhang
,
J.
,
Chao
,
Q.
,
Xu
,
B.
,
Pan
,
M.
,
Wang
,
Q.
, and
Chen
,
Y.
,
2017
, “
Novel Three-Piston Pump Design for a Slipper Test Rig
,”
Appl. Math. Modell.
,
52
, pp.
65
81
.10.1016/j.apm.2017.07.013
24.
Lyu
,
F.
,
Ye
,
S.
,
Zhang
,
J.
,
Xu
,
B.
,
Huang
,
W.
,
Xu
,
H.
, and
Huang
,
X.
,
2021
, “
Theoretical and Simulation Investigations on Flow Ripple Reduction of Axial Piston Pumps Using Nonuniform Distribution of Pistons
,”
ASME J. Dyn. Syst. Meas. Control
,
143
(
4
), p.
041008
.10.1115/1.4048859
25.
Roccatello
,
A.
,
Mancò
,
S.
, and
Nervegna
,
N.
,
2007
, “
Modelling a Variable Displacement Axial Piston Pump in a Multibody Simulation Environment
,”
ASME J. Dyn. Syst. Meas. Control
,
129
(
4
), pp.
456
468
.10.1115/1.2745851
26.
Manring
,
N. D.
,
2000
, “
The Discharge Flow Ripple of an Axial-Piston Swash-Plate Type Hydrostatic Pump
,”
ASME J. Dyn. Syst. Meas. Control
,
122
(
2
), pp.
263
268
.10.1115/1.482452
27.
Edge
,
K. A.
, and
Darling
,
J.
,
1989
, “
The Pumping Dynamics of Swash Plate Piston Pumps
,”
ASME J. Dyn. Syst. Meas. Control
,
111
(
2
), pp.
307
312
.10.1115/1.3153051
28.
Schoenau
,
G. J.
,
Burton
,
R. T.
, and
Kavanagh
,
G. P.
,
1990
, “
Dynamic Analysis of a Variable Displacement Pump
,”
ASME J. Dyn. Syst., Meas., Control
,
112
(
1
), pp.
122
132
.10.1115/1.2894129
29.
Manring
,
N. D.
, and
Johnson
,
R. E.
,
1996
, “
Modeling and Designing a Variable-Displacement Open-Loop Pump
,”
ASME J. Dyn. Syst. Meas. Control
,
118
(
2
), pp.
267
271
.10.1115/1.2802313
30.
Ranawat
,
N. S.
,
Kankar
,
P. K.
, and
Ankur
,
M.
,
2020
, “
Fault Diagnosis in Centrifugal Pump Using Support Vector Machine and Artificial Neural Network
,”
J. Eng. Res. EMSME
,
99
, p. 111.10.36909/jer.EMSME.13881
31.
Moses
,
K.
,
Miglani
,
A.
, and
Kumar Kankar
,
P.
,
2022
, “
Deep CNN-Based Damage Classification of Milled Rice Grains Using a High-Magnification Image Dataset
,”
Comput. Electron. Agric.
,
195
, p.
106811
.10.1016/j.compag.2022.106811
32.
Patil
,
S.
,
Miglani
,
A.
,
Kankar
,
P. K.
, and
Roy
,
D.
,
2022
, “
Deep Learning-Based Methods for Detecting Surface Defects in Steel Plates
,”
Smart Electr. Mech. Syst.
, pp.
87
107
.10.1016/B978-0-323-90789-7.00001-4
33.
PVM Piston Pumps
,
2021
, “
PVM Piston Pumps Service Manual
,” accessed May 26, https://www.eaton.com/ecm/groups/public/@pub/@eaton/@hyd/documents/content/pct_477093.pdf
34.
2021
, “
Vickers Industrial Hydraulics Manual
,” accessed May 6, 2021, https://fdocuments.in/document/289203703-vickers-industrial-hydraulics-manual.html
35.
2021
, “
Hydraulic Axial Piston Eaton Vickers PVB Pump
,” accessed May 26, 2021, http://www.hydpump.com/pdf/Vickers%20PVB%20MVB%20piston%20pump.pd
You do not currently have access to this content.