Abstract

Active base isolation has been studied in the last few decades to improve the control performance of base isolation. As a two-degree-of-freedom active disturbance-rejection method, the equivalent-input-disturbance (EID) approach shows its validity for structural control. It uses a state observer to estimate the effect of disturbances on a control input channel. However, since the model of a base-isolated building has high degrees-of-freedom, the resulting control system has a high order. Thus, the use of a full-order state observer results in the complexity of a control-system implementation. To solve this problem, this paper presents an EID control system that uses a reduced-order state observer (ROSO) to reduce the expense of control-system implementation and ensure system reliability. First, the condition of using an ROSO in an EID control system is derived, and the configuration of an ROSO-based EID control system is presented. Next, the concept of perfect regulation is used to design the gain of the state observer. A stability condition of the system with prescribed control performance is derived in the form of a linear matrix inequality (LMI) that is used to design the gain of the state feedback. Finally, the seismic control of a base-isolated building demonstrates the validity of the method.

References

1.
JSSI
,
2017
, “
Recent Trends in Seismic Isolation Buildings
,” JSSI, Tokyo, Japan, http://www.jssi.or.jp/menshin/doc/keizoku2.pdf
2.
Spencer
,
B. F.
, and
Nagarajaiah
,
S.
,
2003
, “
State of the Art of Structural Control
,”
J. Struct. Eng.
,
129
(
7
), pp.
845
856
.10.1061/(ASCE)0733-9445(2003)129:7(845)
3.
Preumont
,
A.
, and
Seto
,
K.
,
2008
,
Active Control of Structures
,
Wiley
,
West Sussex, UK
.
4.
Hu
,
Y.
, and
He
,
E.
,
2017
, “
Active Structural Control of a Floating Wind Turbine With a Stroke-Limited Hybrid Mass Damper
,”
J. Sound Vib.
,
410
, pp.
447
472
.10.1016/j.jsv.2017.08.050
5.
Zhao
,
Y.-L.
,
Xu
,
Z.-D.
, and
Wang
,
C.
,
2019
, “
Wind Vibration Control of Stay Cables Using Magnetorheolog-Ical Dampers Under Optimal Equivalent Control Algorithm
,”
J. Sound Vib.
,
443
, pp.
732
747
.10.1016/j.jsv.2018.12.016
6.
Huo
,
L.
,
Song
,
G.
,
Li
,
H.
, and
Grigoriadis
,
K.
,
2008
, “
H Robust Control Design of Active Structural Vibration Suppression Using an Active Mass Damper
,”
Smart Mater. Struct.
,
17
(
1
), pp.
1
10
.10.1088/0964-1726/17/01/015021
7.
La
,
V. D.
,
2020
, “
A Simple Frequency Range Selector to Reduce the Unstable Behavior of Active Vibration Isolation
,”
ASME J. Dyn. Syst. Meas. Control
,
142
(
11
), p.
114502
.10.1115/1.4047694
8.
Wang
,
J.
,
2021
, “
Optimal Design for Energy Harvesting Vibration Absorbers
,”
ASME J. Dyn. Syst. Meas. Control
,
143
(
5
), p.
051008
.10.1115/1.4049235
9.
Bhaiya
,
V.
,
Bharti
,
S. D.
,
Shrimali
,
M. K.
, and
Datta
,
T. K.
,
2018
, “
Genetic Algorithm Based Optimum Semi-Active Control of Building Frames Using Limited Number of Magneto-Rheological Dampers and Sensors
,”
ASME J. Dyn. Syst. Meas. Control
,
140
(
10
), p.
101013
.10.1115/1.4040213
10.
Skogestad
,
S.
,
2002
,
Multivariable Feedback Control
, 2nd ed.,
Wiley
,
West Sussex, UK
.
11.
Li
,
S.
,
Yang
,
J.
,
Chen
,
W.-H.
, and
Chen
,
X.
,
2017
,
Disturbance Observer-Based Control: Methods and Applications
,
CRC Press
,
Boca Raton, FL
.
12.
Rayguru
,
M. M.
, and
Kar
,
IN.
,
2019
, “
Contraction Theory Approach to Disturbance Observer Based Filtered Backstepping Design
,”
ASME J. Dyn. Syst. Meas. Control
,
141
(
8
), p.
084501
.10.1115/1.4043102
13.
Chen
,
K.-Y.
,
2020
, “
A Real-Time Parameter Estimation Method by Using Disturbance Observer-Based Control
,”
ASME J. Dyn. Syst. Meas. Control
,
142
(
5
), p.
051005
.10.1115/1.4046153
14.
Han
,
J.
,
2009
, “
From PID to Active Disturbance Rejection Control
,”
IEEE Trans. Ind. Electron.
,
56
(
3
), pp.
900
906
.10.1109/TIE.2008.2011621
15.
Li
,
S.
,
Yang
,
J.
,
Chen
,
W.-H.
, and
Chen
,
X.
,
2012
, “
Generalized Extended State Observer Based Control for Systems With Mismatched Uncertainties
,”
IEEE Trans. Ind. Electron.
,
59
(
12
), pp.
4792
4802
.10.1109/TIE.2011.2182011
16.
Sabanovic
,
A.
, and
Ohnishi
,
K.
,
2011
,
Motion Control Systems
,
Wiley (Asia) Pvt Ltd
.
17.
She
,
J.-H.
,
Fang
,
M.
,
Ohyama
,
Y.
,
Hashimoto
,
H.
, and
Wu
,
M.
,
2008
, “
Improving Disturbance-Rejection Performance Based on an Equivalent-Input-Disturbance Approach
,”
IEEE Trans. Ind. Electron.
,
55
(
1
), pp.
380
389
.10.1109/TIE.2007.905976
18.
She
,
J.-H.
,
Xin
,
X.
, and
Pan
,
Y.
,
2011
, “
Equivalent Input-Disturbance-Approach—Analysis and Application to Disturbance Rejection in Dual-Stage Feed Drive Control System
,”
IEEE/ASME Trans. Mechatronics
,
16
(
2
), pp.
330
340
.10.1109/TMECH.2010.2043258
19.
Miyamoto
,
K.
,
She
,
J.
,
Imani
,
J.
,
Xin
,
X.
, and
Sato
,
D.
,
2016
, “
Equivalent-Input-Disturbance Approach to Active Structural Control for Seismically Excited Buildings
,”
Eng. Struct.
,
125
, pp.
392
399
.10.1016/j.engstruct.2016.07.028
20.
Miyamoto
,
K.
,
Sato
,
D.
,
She
,
J.
,
Chen
,
Y.
, and
Han
,
Q.-L.
,
2021
, “
New Spectra of Responses and Control Force for Design of Equivalent-Input-Disturbance-Based Active Structural Control of Base-Isolated Buildings
,”
J. Sound Vib.
,
507
, p.
116160
.10.1016/j.jsv.2021.116160
21.
Paz
,
M.
, and
Leigh
,
W.
,
2003
,
Structural Dynamics -Theory and Computation
, 5th ed.,
Springer
,
Boston, MA
.
22.
Chopla
,
A. K.
,
2007
,
Dynamics of structures -Theory and Applications to Earthquake Engineering
, 3rd ed.,
Pearson Prentice Hall
,
Upper Saddle River, NJ
.
23.
Yoshida
,
O.
,
Sano
,
T.
,
Katsumata
,
H.
,
Endo
,
F.
,
Watanabe
,
T.
, and
Yamanaka
,
M.
,
2017
, “
Application of Active Base Isolation System Using Absolute Vibration Control Technology
,”
Proceedings of 16th World Confer- Ence on Earthquake (16WCEE 2017)
, January, 3945, pp.
1
10
.
24.
She
,
J.
, and
Xin
,
X.
,
2007
, “
Equivalent-Input-Disturbance Method Improves Disturbance Rejection Performance: The Mimo Case
,”
2007 Chinese Control Conference
, Hunan, China, July 26-31, pp.
642
647
.
25.
Suzuki
,
R.
,
Miyazaki
,
T.
, and
Kobayashi
,
N.
,
2008
, “
Decoupling Control Via All Stabilizing Controller With Limiting Properties of LQ Control and Its Application to a Mechanical System
,”
IEEE Trans. Ind. Electron.
,
55
(
1
), pp.
380
389
.10.1109/CCA.2001.973900
26.
Skelton
,
R. E.
,
Iwasaki
,
T.
, and
Grigoriadis
,
K.
,
1997
,
A Unified Algebraic Approach to Linear Control Design
,
Taylor & Francis
,
Bristol, UK
.
27.
Miyamoto
,
K.
,
Sato
,
D.
, and
She
,
J.
,
2018
, “
A New Performance Index of LOR for Combination of Passive Base Isolation and Active Structural Control
,”
Eng. Struct.
,
157
, pp.
280
299
.10.1016/j.engstruct.2017.11.070
28.
Zelleke
,
D. H.
,
Elias
,
S.
,
Matsagar
,
V.
, and
Jain
,
A. K.
,
2015
, “
Supplemental Dampers in Base-Isolated Buildings to Mitigate Large Isolator Displacement Under Earthquake Excitations
,”
Bull. New Zealand Soc. Earthquake Eng.
,
48
(
2
), pp.
100
117
.10.5459/bnzsee.48.2.100-117
29.
FEMA-P695
,
2009
, “
Quantification of Building Seismic Performance Factors
,”
FEMA
, Washington, DC.https://nehrpsearch.nist.gov/static/files/FEMA/PB2010101512.pdf
30.
National Research Institute for Earth Science and Disaster Resilience (NIED K-NET, KiK-net)
,
2019
, “
National Research Institute for Earth Science and Disaster Resilience
,” Tsukuba,
epub
.https://www.jssi.or.jp/menshin/doc/keizoku2.pdf
31.
Tanaka
,
Y.
,
Fukuwa
,
N.
,
Tobita
,
J.
, and
Mori
,
M.
,
2011
, “
Development and Analysis of Database for Base-Isolated Buildings in japan
,”
AIJ J. Technol. Des.
,
17
(
35
), pp.
79
84
.10.3130/aijt.17.79
32.
Åstroem
,
K. J.
, and
Wittenmark
,
B.
,
2011
,
Computer-Controlled Systems: Theory and Design
, 3rd ed.,
Dover Publications (Dover Books on Electrical Engineering)
.
33.
Gang
,
S.
,
Jiaohao
,
L.
,
Yao
,
Z.
,
Howson
,
W. P.
, and
Williams
,
F. W.
,
2007
, “
Robust H Control for a Seismic Structures With Uncertainties in Model Parameters
,”
Earthquake Eng. Eng. Vib.
,
6
(
4
), pp.
409
416
.10.1007/s11803-007-0782-7
34.
Iba
,
D.
,
Masuda
,
A.
, and
Sone
,
A.
,
2006
, “
Robust Design Method of Multi-Degree-of-Freedom Passive Tuned Mass Damper by Control Theory
,”
ASME
Paper No. PVP2006-ICPVT-11-93364.10.1115/PVP2006-ICPVT-11-93364
35.
Miyamoto
,
K.
,
Nakano
,
S.
,
She
,
J.
,
Sato
,
D.
,
Chen
,
Y.
, and
Han
,
Q.-L.
,
2022
, “
Design Method of Tuned Mass Damper by Linear-Matrix-Inequality-Based Robust Control Theory for Seismic Excitation
,”
ASME J. Vib. Acoust.
,
144
(
4
), p.
041008
.10.1115/1.4053544
36.
Choi
,
H. H.
,
1999
, “
On the Existence of Linear Sliding Surfaces for a Class of Uncertain Dynamic Systems With Mismatched Uncertainties
,”
Automatica
,
35
(
10
), pp.
1707
1715
.10.1016/S0005-1098(99)00081-3
37.
Liu
,
R.
,
Liu
,
G.
,
Wu
,
M.
,
Xiao
,
F.-C.
, and
She
,
J.
,
2013
, “
Robust Disturbance Rejection Based on Equivalent-Input-Disturbance Approach
,”
IET Control Theory Appl.
,
7
(
9
), pp.
1261
1268
.10.1049/iet-cta.2013.0054
38.
Sariyildiz
,
E.
,
Oboe
,
R.
, and
Ohnishi
,
K.
,
2020
, “
Disturbance Observer-Based Robust Control and Its Applications: 35th Anniversary Overview
,”
IEEE Trans. Ind. Electron.
,
67
(
3
), pp.
2042
2053
.10.1109/TIE.2019.2903752
39.
Kimura
,
H.
,
1981
, “
A New Approach to the Perfect Regulation and the Bounded Peaking in Linear Multivariable Control Systems
,”
IEEE Trans. Autom. Control
,
26
(
1
), pp.
253
270
.10.1109/TAC.1981.1102573
You do not currently have access to this content.