Abstract

This paper focuses on the empirical derivation of regret bounds for mobile systems that can optimize their locations in real-time within a spatiotemporally varying renewable energy resource. The case studies in this paper focus specifically on an airborne wind energy system, where the replacement of towers with tethers and a lifting body allows the system to adjust its altitude continuously, with the goal of operating at the altitude that maximizes net power production. While prior publications have proposed control strategies for this problem, often with favorable results based on simulations that use real wind data, they lack any theoretical or statistical performance guarantees. In this work, we make use of a very large synthetic dataset, identified through parameters from real wind data, to derive probabilistic bounds on the difference between optimal and actual performance, termed regret. The results are presented for a variety of control strategies, including maximum probability of improvement, upper confidence bound, greedy, and constant altitude approaches. In addition, we use dimensional analysis to generalize the aforementioned results to other spatiotemporally varying environments, making the results applicable to a wider variety of renewably powered mobile systems. Finally, to deal with more general environmental mean models, we introduce a novel approach to modify calculable regret bounds to accommodate any mean model through what we term an “effective spatial domain.”

References

1.
Solanas
,
A.
, and
Garcia
,
M.
,
2004
, “
Coordinated Multi-Robot Exploration Through Unsupervised Clustering of Unknown Space
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Sendai, Japan, Sept. 28–Oct. 2.10.1109/IROS.2004.1389437
2.
Quann
,
M.
,
Ojeda
,
L.
,
Smith
,
W.
,
Rizzo
,
D.
,
Castanier
,
M.
, and
Barton
,
K.
,
2017
, “
An Energy-Efficient Method for Multi-Robot Reconnaissance in an Unknown Environment
,”
American Control Conference
, Seattle, WA, May 24–26.10.23919/ACC.2017.7963292
3.
Bentz
,
W.
,
Hoang
,
T.
,
Bayasgalan
,
E.
, and
Panagou
,
D.
,
2018
, “
Complete 3-D Dynamic Coverage in Energy-Constrained multi-UAV Sensor Networks
,”
Auton. Robots
,
42
(
4
), pp.
825
851
.10.1007/s10514-017-9661-x
4.
Meinig
,
C.
,
Lawrence-Slavas
,
N.
,
Jenkins
,
R.
, and
Tabisola
,
H.
,
2015
, “
The Use of Saildrones to Examine Spring Conditions in the Bering Sea: Vehicle Specification and Mission Performance
,”
OCEANS 2015
, Washington, DC, May 18–21, pp.
1
6
.10.23919/OCEANS.2015.7404348
5.
Hartl
,
A. E.
, and
Mazzoleni
,
A. P.
,
2010
, “
Dynamic Modeling of a Wind-Driven Tumbleweed Rover Including Atmospheric Effects
,”
J. Spacecr. Rockets
,
47
(
3
), pp.
493
502
.10.2514/1.45174
6.
Yallop
,
O.
,
2014
, “
Inflatable Turbines: The Windfarms of the Future?
,” accessed Mar. 29, 2019, https://www.telegraph.co.uk/news/earth/energy/windpower/10774688/Inflatable-turbines-the-windfarms-of-the-future.html
7.
Bafandeh
,
A.
, and
Vermillion
,
C.
,
2016
, “
Real-Time Altitude Optimization of Airborne Wind Energy Systems Using Lyapunov-Based Switched Extremum Seeking Control
,”
American Control Conference
, Boston, MA, July 6–8, pp.
4990
4995
.10.1109/ACC.2016.7526144
8.
Baheri
,
A.
,
Bin-Karim
,
S.
,
Bafandeh
,
A.
, and
Vermillion
,
C.
,
2017
, “
Real-Time Control Using Bayesian Optimization: A Case Study in Airborne Wind Energy Systems
,”
Control Eng. Pract.
,
69
, pp.
131
140
.10.1016/j.conengprac.2017.09.007
9.
Bafandeh
,
A.
,
Bin-Karim
,
S.
,
Baheri
,
A.
, and
Vermillion
,
C.
,
2018
, “
A Comparative Assessment of Hierarchical Control Structures for Spatiotemporally-Varying Systems, With Application to Airborne Wind Energy
,”
Control Eng. Pract.
,
74
, pp.
71
83
.10.1016/j.conengprac.2018.02.008
10.
Dunn
,
L.
,
Vermillion
,
C.
,
Chow
,
F. K.
, and
Moura
,
S.
,
2019
, “
On Wind Speed Sensor Configurations and Altitude Control in Airborne Wind Energy Systems
,”
American Control Conference
, Philadelphia, PA.
11.
Slivkins
,
A.
, and
Upfal
,
E.
,
2008
, “
Adapting to a Changing Environment: The Brownian Restless Bandits
,” 21st Conference on Learning Theory (
COLT
), Helsinki, Finland, July 9–12, pp.
343
354
.https://www.learningtheory.org/colt2008/papers/45-Slivkins.pdf
12.
Besbes
,
O.
,
Gur
,
Y.
, and
Zeevi
,
A.
,
2014
, “
Stochastic Multi-Armed-Bandit Problem With Non-stationary Rewards
,”
Advances in Neural Information Processing Systems 27
,
Z.
Ghahramani
,
M.
Welling
,
C.
Cortes
,
N. D.
Lawrence
, and
K. Q.
Weinberger
, eds.,
Curran Associates, Inc
, Montreal, QC, Canada, pp.
199
207
.
13.
Garivier
,
A.
, and
Moulines
,
E.
,
2011
, “
On Upper-Confidence Bound Policies for Switching Bandit Problems
,”
Algorithmic Learning Theory
,
J.
Kivinen
,
C.
Szepesvári
,
E.
Ukkonen
, and
T.
Zeugmann
, eds.,
Springer
,
Berlin, Germany
, pp.
174
188
.
14.
Srinivas
,
N.
,
Krause
,
A.
,
Kakade
,
S. M.
, and
Seeger
,
M. W.
,
2009
, “
Gaussian Process Bandits Without Regret: An Experimental Design Approach
,”
Proceedings of the 27th International Conference on Machine Learning 2010, Haifa, Israel
.
15.
Krause
,
A.
, and
Ong
,
C. S.
,
2011
, “
Contextual Gaussian Process Bandit Optimization
,”
Advances in Neural Information Processing Systems
,
J.
Shawe-Taylor
,
R. S.
Zemel
,
P. L.
Bartlett
,
F.
Pereira
, and
K. Q.
Weinberger
, eds.,
Curran Associates, Inc.
, Grenada, Spain, pp.
2447
2455
.
16.
Bafandeh
,
A.
, and
Vermillion
,
C.
,
2017
, “
Altitude Optimization of Airborne Wind Energy Systems Via Switched Extremum Seeking–Design, Analysis, and Economic Assessment
,”
IEEE Trans. Control Syst. Technol.
,
25
(
6
), pp.
2022
2033
.10.1109/TCST.2016.2632534
17.
Haydon
,
B.
,
Cole
,
J.
,
Dunn
,
L.
,
Keyantuo
,
P.
,
Chow
,
T.
,
Moura
,
S.
, and
Vermillion
,
C.
,
2019
, “
Empirical Regret Bounds for Control in Spatiotemporally Varying Environments: A Case Study in Airborne Wind Energy
,”
ASME
Paper No. DSCC2019-9068
.10.1115/DSCC2019-9068
18.
Audibert
,
J.-Y.
,
Munos
,
R.
, and
Szepesvári
,
C.
,
2009
, “
Exploration– Exploitation Tradeoff Using Variance Estimates in Multi-Armed Bandits
,”
Theor. Comput. Sci.
,
410
(
19
), pp.
1876
1902
.10.1016/j.tcs.2009.01.016
19.
Williams
,
C. K.
, and
Rasmussen
,
C. E.
,
2006
,
Gaussian Processes for Machine Learning
,
MIT Press
,
Cambridge, MA
.
20.
Archer
,
C.
,
2014
,
Wind Profiler at Cape Henlopen
, Report.
21.
Kushner
,
H. J.
,
1964
, “
A New Method of Locating the Maximum Point of an Arbitrary Multipeak Curve in the Presence of Noise
,”
ASME J. Basic Eng.
,
86
(
1
), pp.
97
106
.10.1115/1.3653121
22.
Cox
,
D.
, and
John
,
S.
,
1992
, “
SDO: A Statistical Method for Global Optimization
,”
Multidisciplinary Design Optimization: State of the Art
, Vol.
2
,
IEEE International Conference on Systems
, Man, and Cybernetics, Chicago, IL, Oct. 18–21, pp.
1241
1246
.https://www.researchgate.net/publication/2764365_SDO_A_Statistical_Method_for_Global_Optimization
23.
Buckingham
,
E.
,
1914
, “
On Physically Similar Systems; Illustrations of the Use of Dimensional Equations
,”
Phys. Rev.
,
4
(
4
), pp.
345
376
.10.1103/PhysRev.4.345
You do not currently have access to this content.