Abstract

This paper presents the design of an observer-based stabilizing controller for linear discrete-time systems subject to interval time-varying state-delay. In this work, the problem has been formulated in convex optimization framework by constructing a new Lyapunov–Krasovskii (LK) functional to derive delay-dependent stabilization criteria. The summation inequality and the extended reciprocally convex inequality are exploited to obtain a less conservative delay upper bound in linear matrix inequality (LMI) framework. The derived stability conditions are delay-dependent and thus ensure global asymptotic stability in presence of any time-delay less than the obtained delay upper bound. Numerical examples are included to demonstrate the usefulness of the developed results.

References

1.
Dey
,
R.
,
Ray
,
G.
, and
Balas
,
V. E.
,
2017
,
Stability and Stabilization of Linear and Fuzzy Time-Delay Systems: A Linear Matrix Inequality Approach
, Vol.
141
,
Springer
,
Berlin
.
2.
Fridman
,
E.
, and
Shaked
,
U.
,
2002
, “
An Improved Stabilization Method for Linear Time-Delay Systems
,”
IEEE Trans. Autom. Control
,
47
(
11
), pp.
1931
1937
.10.1109/TAC.2002.804462
3.
Kwon
,
O.
,
Park
,
M.-J.
,
Park
,
J. H.
,
Lee
,
S.-M.
, and
Cha
,
E.-J.
,
2013
, “
Stability and Stabilization for Discrete-Time Systems With Time-Varying Delays Via Augmented Lyapunov–Krasovskii Functional
,”
J. Franklin Inst.
,
350
(
3
), pp.
521
540
.10.1016/j.jfranklin.2012.12.013
4.
Moon
,
Y. S.
,
Park
,
P.
,
Kwon
,
W. H.
, and
Lee
,
Y. S.
,
2001
, “
Delay-Dependent Robust Stabilization of Uncertain State-Delayed Systems
,”
Int. J. Control
,
74
(
14
), pp.
1447
1455
.10.1080/00207170110067116
5.
Park
,
P.
,
Ko
,
J. W.
, and
Jeong
,
C.
,
2011
, “
Reciprocally Convex Approach to Stability of Systems With Time-Varying Delays
,”
Automatica
,
47
(
1
), pp.
235
238
.10.1016/j.automatica.2010.10.014
6.
Seuret
,
A.
,
Gouaisbaut
,
F.
, and
Fridman
,
E.
,
2015
, “
Stability of Discrete-Time Systems With Time-Varying Delays Via a Novel Summation Inequality
,”
IEEE Trans. Autom. Control
,
60
(
10
), pp.
2740
2745
.10.1109/TAC.2015.2398885
7.
Zhang
,
C.-K.
,
He
,
Y.
,
Jiang
,
L.
,
Wu
,
M.
, and
Wang
,
Q.-G.
,
2017
, “
An Extended Reciprocally Convex Matrix Inequality for Stability Analysis of Systems With Time-Varying Delay
,”
Automatica
,
85
, pp.
481
485
.10.1016/j.automatica.2017.07.056
8.
Nam
,
P. T.
,
Trinh
,
H.
, and
Pathirana
,
P. N.
,
2015
, “
Discrete Inequalities Based on Multiple Auxiliary Functions and Their Applications to Stability Analysis of Time-Delay Systems
,”
J. Franklin Inst.
,
352
(
12
), pp.
5810
5831
.10.1016/j.jfranklin.2015.09.018
9.
Chen
,
J.
,
Lu
,
J.
, and
Xu
,
S.
,
2016
, “
Summation Inequality and Its Application to Stability Analysis for Time-Delay Systems
,”
IET Control Theory Appl.
,
10
(
4
), pp.
391
395
.10.1049/iet-cta.2015.0576
10.
Chen, J., Xu, S., Jia, X., and Zhang, B.,
2017
, “
Novel Summation Inequalities and Their Applications to Stability Analysis for Systems With Time-Varying Delay
,”
IEEE Trans. Automatic Control
,
62
(
5
), pp.
2470
2475
.10.1109/TAC.2016.2606902
11.
Lee
,
S. Y.
,
Park
,
J.
, and
Park
,
P.
,
2019
, “
Bessel Summation Inequalities for Stability Analysis of Discrete-Time Systems With Time-Varying Delays
,”
Int. J. Robust Nonlinear Control
,
29
(
2
), pp.
473
491
.10.1002/rnc.4398
12.
Zhao
,
T.
,
Liang
,
W.
,
Dian
,
S.
,
Xiao
,
J.
, and
Wei
,
Z.
,
2018
, “
Improved Stability and Stabilisation Criteria for Discrete Time-Delay Systems Via a Novel Double Summation Inequality
,”
IET Control Theory Appl.
,
12
(
3
), pp.
327
337
.10.1049/iet-cta.2017.0791
13.
Venkatesh
,
M.
,
Patra
,
S.
, and
Ray
,
G.
,
2021
, “
Improved Robust Stability and Stabilization Conditions for Discrete-Time Linear Systems With Time-Varying Delay
,”
Int. J. Autom. Control
(in press).
14.
Maity
,
D.
,
Mamduhi
,
M. H.
,
Hirche
,
S.
,
Johansson
,
K. H.
, and
Baras
,
J. S.
,
2019
, “
Optimal LQG Control Under Delay-Dependent Costly Information
,”
IEEE Control Syst. Lett.
,
3
(
1
), pp.
102
107
.10.1109/LCSYS.2018.2853648
15.
He
,
Y.
,
Wu
,
M.
,
Liu
,
G.-P.
, and
She
,
J.-H.
,
2008
, “
Output Feedback Stabilization for a Discrete-Time System With a Time-Varying Delay
,”
IEEE Trans. Autom. Control
,
53
(
10
), pp.
2372
2377
.10.1109/TAC.2008.2007522
16.
Chen
,
J.
,
Lin
,
C.
,
Chen
,
B.
, and
Wang
,
Q.-G.
,
2017
, “
Improved Stability Criterion and Output Feedback Control for Discrete Time-Delay Systems
,”
Appl. Math. Modell.
,
52
, pp.
82
93
.10.1016/j.apm.2017.07.048
17.
Hassan
,
L.
,
2013
, “
Observation and Control of Nonlinear Time-Delay Systems
,” Ph.D. dissertation,
Universite de Lorraine
,
Nancy, France
.
18.
Echi
,
N.
,
2021
, “
Observer Design and Practical Stability of Nonlinear Systems Under Unknown Time-Delay
,”
Asian J. Control
,
23
(
2
), pp.
685
696
.10.1002/asjc.2271
19.
Zhu
,
Q.
,
Lu
,
K.
, and
Zhu
,
Y.
,
2016
, “
Observer-Based Feedback Control of Networked Control Systems With Delays and Packet Dropouts
,”
ASME J. Dyn. Syst., Meas., Control
,
138
(
2
), p.
021011
.10.1115/1.4032135
20.
Li
,
J.-N.
,
Xu
,
Y.-F.
,
Bao
,
W.-D.
,
Li
,
Z.-J.
, and
Li
,
L.-S.
,
2019
, “
Finite-Time Non-Fragile State Estimation for Discrete Neural Networks With Sensor Failures, Time-Varying Delays and Randomly Occurring Sensor Nonlinearity
,”
J. Franklin Inst.
,
356
(
3
), pp.
1566
1589
.10.1016/j.jfranklin.2018.10.032
21.
Guo
,
J.
,
Wang
,
Y.
, and
Bo
,
Y.
,
2021
, “
Adaptive Global Stability of Nonlinear Pure-Feedback Systems With Unknown Time-Varying Delays
,”
ASME J. Dyn. Syst., Meas., Control
,
143
(
3
), p.
034502
.10.1115/1.4048587
22.
Li
,
L.
, and
Jia
,
Y.
,
2009
, “
Non-Fragile Dynamic Output Feedback Control for Linear Systems With Time-Varying Delay
,”
IET Control Theory Appl.
,
3
(
8
), pp.
995
1005
.10.1049/iet-cta.2008.0008
23.
Lo
,
J.-C.
, and
Lin
,
M.-L.
,
2004
, “
Observer-Based Robust H Control for Fuzzy Systems Using Two-Step Procedure
,”
IEEE Trans. Fuzzy Syst.
,
12
(
3
), pp.
350
359
.10.1109/TFUZZ.2004.825992
24.
Xu
,
S.
,
Lam
,
J.
,
Zhang
,
B.
, and
Zou
,
Y.
,
2014
, “
A New Result on the Delay-Dependent Stability of Discrete Systems With Time-Varying Delays
,”
Int. J. Robust Nonlinear Control
,
24
(
16
), pp.
2512
2521
.10.1002/rnc.3006
You do not currently have access to this content.