Abstract

Most industrial serial robots use decentralized joint controllers assuming rigid body dynamics. To prevent exciting the flexible mode, gains are kept low, resulting in poor control bandwidth and disturbance rejection. In this paper, a two-stage flexible joint discrete controller is presented, in which the decentralized approach is extended with a stiffness to take into account the dominant coupling mode. In the first-stage, an input shaping feedforward shapes the rigid closed-loop dynamics into desired dynamics that does not produce link vibrations. Robotic dynamic computation based on a recursive Newton–Euler algorithm is conducted to update the feedforward link inertia parameter during robot motion. A second-stage is added to increase disturbance rejection. A generalized Smith predictor (GSP) is developed to compensate for delay and feedback sensor filtering. An effective methodology is presented to optimize the control loop gains. Numerical simulations and experiments on a six-joint robot manipulator confirm that the proposed controller improves control performances in terms of bandwidth, vibration attenuation, and disturbance rejection.

References

1.
Lessard
,
J.
,
Bigras
,
P.
,
Liu
,
Z.
, and
Hazel
,
B.
,
2014
, “
Characterization, Modeling and Vibration Control of a Flexible Joint for a Robotic System
,”
J. Vib. Control
,
20
(
6
), pp.
943
960
.10.1177/1077546312466884
2.
Albu-Schäffer
,
A.
,
Ott
,
C.
, and
Hirzinger
,
G.
,
2007
, “
A Unified Passivity-Based Control Framework for Position, Torque and Impedance Control of Flexible Joint Robots
,”
Int. J. Rob. Res.
,
26
(
1
), pp.
23
39
.10.1177/0278364907073776
3.
Rice
,
J. J.
, and
Schimmels
,
J. M.
,
2018
, “
Passive Compliance Control of Redundant Serial Manipulators
,”
ASME J. Mech. Rob.
,
10
(
4
), p. 044507.10.1115/1.4039591
4.
Keppler
,
M.
,
Lakatos
,
D.
,
Ott
,
C.
, and
Albu-Schaffer
,
A.
,
2018
, “
Elastic Structure Preserving (ESP) Control for Compliantly Actuated Robots
,”
IEEE Trans. Rob.
,
34
(
2
), pp.
317
335
.10.1109/TRO.2017.2776314
5.
Nanos
,
K.
, and
Papadopoulos
,
E. G.
,
2015
, “
On the Dynamics and Control of Flexible Joint Space Manipulators
,”
Control Eng. Pract.
,
45
, pp.
230
243
.10.1016/j.conengprac.2015.06.009
6.
Youping
,
Z.
,
Fidan
,
B.
, and
Ioannou
,
P. A.
,
2003
, “
Backstepping Control of Linear Time-Varying Systems With Known and Unknown Parameters
,”
IEEE Trans. Autom. Control
,
48
(
11
), pp.
1908
1925
.10.1109/TAC.2003.819074
7.
Bang
,
J. S.
,
Shim
,
H.
,
Park
,
S. K.
, and
Seo
,
J. H.
,
2010
, “
Robust Tracking and Vibration Suppression for a Two-Inertia System by Combining Backstepping Approach With Disturbance Observer
,”
IEEE Trans. Ind. Electron.
,
57
(
9
), pp.
3197
3206
.10.1109/TIE.2009.2038398
8.
Yun
,
J. N.
,
Su
,
J.
,
Kim
,
Y. I.
, and
Kim
,
Y. C.
,
2013
, “
Robust Disturbance Observer for Two-Inertia System
,”
IEEE Trans. Ind. Electron.
,
60
(
7
), pp.
2700
2710
.10.1109/TIE.2012.2194976
9.
Chen
,
W.
, and
Tomizuka
,
M.
,
2014
, “
Dual-Stage Iterative Learning Control for MIMO Mismatched System With Application to Robots With Joint Elasticity
,”
IEEE Trans. Control Syst. Technol.
,
22
(
4
), pp.
1350
1361
.10.1109/TCST.2013.2279652
10.
Meng
,
T.
, and
He
,
W.
,
2018
, “
Iterative Learning Control of a Robotic Arm Experiment Platform With Input Constraint
,”
IEEE Trans. Ind. Electron.
,
65
(
1
), pp.
664
672
.10.1109/TIE.2017.2719598
11.
Wang
,
C.
,
Zheng
,
M.
,
Wang
,
Z.
,
Peng
,
C.
, and
Tomizuka
,
M.
,
2018
, “
Robust Iterative Learning Control for Vibration Suppression of Industrial Robot Manipulators
,”
ASME J. Dyn. Syst. Meas. Control
,
140
(
1
), p.
011003
.10.1115/1.4037265
12.
Khaled
,
T.
,
Akhrif
,
O.
, and
Bonev
,
I.
,
2020
, “
Dynamic Path Correction of an Industrial Robot Using a Distance Sensor and an ADRC Controller
,”
IEEE/ASME Trans. Mechatronics
(accepted). 10.1109/TMECH.2020.3026994
13.
Smith
,
J. Y.
,
Kozak
,
K.
, and
Singhose
,
W. E.
,
2002
, “
Input Shaping for a Simple Nonlinear System
,”
Proceedings of the 2002 American Control Conference
, Vol.
1
, Anchorage, AK, May 8–10, IEEE Cat. No. CH37301, pp.
821
826
.10.1109/ACC.2002.1024916
14.
Singhose
,
W.
,
2009
, “
Command Shaping for Flexible Systems: A Review of the First 50 Years
,”
Int. J. Precis. Eng. Manuf.
,
10
(
4
), pp.
153
168
.10.1007/s12541-009-0084-2
15.
Lightcap
,
C. A.
, and
Banks
,
S. A.
,
2010
, “
An Extended Kalman Filter for Real-Time Estimation and Control of a Rigid-Link Flexible-Joint Manipulator
,”
IEEE Trans. Control Syst. Technol.
,
18
(
1
), pp.
91
103
.10.1109/TCST.2009.2014959
16.
Sariyildiz
,
E.
,
Chen
,
G.
, and
Yu
,
H.
,
2016
, “
An Acceleration-Based Robust Motion Controller Design for a Novel Series Elastic Actuator
,”
IEEE Trans. Ind. Electron.
,
63
(
3
), pp.
1900
1910
.10.1109/TIE.2015.2512228
17.
Ott
,
C.
,
Albu-Schaffer
,
A.
,
Kugi
,
A.
, and
Hirzinger
,
G.
,
2008
, “
On the Passivity-Based Impedance Control of Flexible Joint Robots
,”
IEEE Trans. Rob.
,
24
(
2
), pp.
416
429
.10.1109/TRO.2008.915438
18.
Dallali
,
H.
,
Medrano-Cerda
,
G.
,
Kashiri
,
N.
,
Tsagarakis
,
N.
, and
Caldwell
,
D.
,
2014
, “
Decentralized Feedback Design for a Compliant Robot Arm
,”
2014 European Modelling Symposium
, Pisa, Italy, Oct. 21–23, pp.
269
274
.10.1109/EMS.2014.101
19.
Paine
,
N.
,
Mehling
,
J. S.
,
Holley
,
J.
,
Radford
,
N. A.
,
Johnson
,
G.
,
Fok
,
C.-L.
, and
Sentis
,
L.
,
2015
, “
Actuator Control for the NASA-JSC Valkyrie Humanoid Robot: A Decoupled Dynamics Approach for Torque Control of Series Elastic Robots
,”
J. Field Rob.
,
32
(
3
), pp.
378
396
.10.1002/rob.21556
20.
Morales
,
R.
,
Feliu
,
V.
, and
Jaramillo
,
V.
,
2012
, “
Position Control of Very Lightweight Single-Link Flexible Arms With Large Payload Variations by Using Disturbance Observers
,”
Rob. Auton. Syst.
,
60
(
4
), pp.
532
547
.10.1016/j.robot.2011.11.016
21.
Pham
,
M.-N.
,
Hamelin
,
P.
,
Hazel
,
B.
, and
Liu
,
Z.
,
2020
, “
A Two-Stage State Feedback Controller Supported by Disturbance-State Observer for Vibration Control of a Flexible-Joint Robot
,”
Robotica
,
38
(
6
), pp.
1
23
.10.1017/S0263574719001267
22.
Rodriguez-Angeles
,
A.
, and
Nijmeijer
,
H.
,
2004
, “
Synchronizing Tracking Control for Flexible Joint Robots Via Estimated State Feedback
,”
ASME J. Dyn. Syst. Meas. Control
,
126
(
1
), pp.
162
172
.10.1115/1.1636197
23.
Spong
,
M. W.
,
1987
, “
Modeling and Control of Elastic Joint Robots
,”
ASME J. Dyn. Syst. Meas. Control
,
109
(
4
), pp.
310
318
.10.1115/1.3143860
24.
De Luca
,
A.
, and
Book
,
W.
,
2008
, “
Robots With Flexible Elements
,”
Springer Handbook of Robotics
,
B.
Siciliano
and
O.
Khatib
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
287
319
.
25.
Ellis
,
G.
,
2004
,
Control System Design Guide
, 3rd ed.,
Academic Press
,
Burlington
, MA, pp.
341
361
.
26.
Borase
,
R. P.
,
Maghade
,
D. K.
,
Sondkar
,
S. Y.
, and
Pawar
,
S. N.
,
2020
, “
A Review of PID Control, Tuning Methods and Applications
,”
Int. J. Dyn. Control
(accepted).10.1007/s40435-020-00665-4
27.
Craig
,
J. J.
,
1989
,
Introduction to Robotics: Mechanics and Control
,
Addison-Wesley Longman
,
Boston
.
28.
Tsai
,
L.-W.
,
1999
, “
Robot Analysis
,”
The Mechanics of Serial and Parallel Manipulators
,
Wiley
,
New York
, p.
505
.
29.
Smith
,
J. M.
,
1957
, “
Closer Control of Loops With Dead Time
,”
Chem. Eng. Prog.
,
53
(
5
), pp.
217
219
.
30.
Lee
,
T. H.
,
Wang
,
Q. G.
, and
Tan
,
K. K.
,
1996
, “
Robust Smith-Predictor Controller for Uncertain Delay Systems
,”
AIChE J.
,
42
(
4
), pp.
1033
1040
.10.1002/aic.690420415
31.
Ahmadi
,
A.
, and
Nikravesh
,
S.
,
2016
, “
Robust Smith Predictor (RSP)
,”
24th Iranian Conference on Electrical Engineering (ICEE)
, Shiraz, Iran, May 10–12, pp.
510
1515
.10.1109/IranienCEE.16.585761
32.
Oh
,
S.
, and
Kong
,
K.
,
2017
, “
High-Precision Robust Force Control of a Series Elastic Actuator
,”
IEEE/ASME Trans. Mechatronics
,
22
(
1
), pp.
71
80
.10.1109/TMECH.2016.2614503
33.
Maragos
,
P.
,
Kaiser
,
J. F.
, and
Quatieri
,
T. F.
,
1993
, “
Energy Separation in Signal Modulations With Application to Speech Analysis
,”
IEEE Trans. Signal Process.
,
41
(
10
), pp.
3024
3051
.10.1109/78.277799
34.
Tomizuka
,
M.
,
1987
, “
Zero Phase Error Tracking Algorithm for Digital Control
,”
ASME J. Dyn. Syst. Meas. Control
,
109
(
1
), pp.
65
68
.10.1115/1.3143822
35.
An-Chyau
,
H.
, and
Yuan-Chih
,
C.
,
2004
, “
Adaptive Sliding Control for Single-Link Flexible-Joint Robot With Mismatched Uncertainties
,”
IEEE Trans. Control Syst. Technol.
,
12
(
5
), pp.
770
775
.10.1109/TCST.004.826968
You do not currently have access to this content.