Abstract

In this paper, we develop a constructive finite time stabilizing feedback control law for stochastic dynamical systems driven by Wiener processes based on the existence of a stochastic control Lyapunov function. In addition, we present necessary and sufficient conditions for continuity of such controllers. Moreover, using stochastic control Lyapunov functions, we construct a universal inverse optimal feedback control law for nonlinear stochastic dynamical systems that possess guaranteed gain and sector margins. An illustrative numerical example involving the control of thermoacoustic instabilities in combustion processes is presented to demonstrate the efficacy of the proposed framework.

References

1.
Artstein
,
Z.
,
1983
, “
Stabilization With Relaxed Controls
,”
Non. Anal. Theory, Methods Appl.
,
7
(
11
), pp.
1163
1173
.10.1016/0362-546X(83)90049-4
2.
Sontag
,
E. D.
,
1989
, “
A Universal Construction of Artstein's Theorem on Nonlinear Stabilization
,”
Sys. Contr. Lett.
,
13
(
2
), pp.
117
123
.10.1016/0167-6911(89)90028-5
3.
Rifford
,
L.
,
2001
, “
On the Existence of Nonsmooth Control-Lyapunov Functions in the Sense of Generalized Gradients
,”
ESAIM: Control, Optim. Calculus Var.
,
6
, pp.
593
611
.10.1051/cocv:2001124
4.
Rifford
,
L.
,
2002
, “
Semiconcave Control-Lyapunov Functions and Stabilizing Feedbacks
,”
SIAM J. Control Optim.
,
41
(
3
), pp.
659
681
.10.1137/S0363012900375342
5.
Haddad
,
W. M.
,
2014
, “
Nonlinear Differential Equations With Discontinuous Right-Hand Sides: Filippov Solutions, Nonsmooth Stability and Dissipativity Theory, and Optimal Discontinuous Feedback Control
,”
Comm. App. Anal.
,
18
(
3
), pp.
455
522
.https://pdfs.semanticscholar.org/0bfa/71fd985488aee7ef0b0ed0875288443d82ce.pdf
6.
Sadikhov
,
T.
, and
Haddad
,
W. M.
,
2015
, “
A Universal Feedback Controller for Discontinuous Dynamical Systems Using Nonsmooth Control Lyapunov Functions
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
4
), p.
041005
. 10.1115/1.4028593
7.
Florchinger
,
P.
,
1995
, “
Lyapunov-Like Techniques for Stochastic Stability
,”
SIAM J. Control Optim.
,
33
(
4
), pp.
1151
1169
.10.1137/S0363012993252309
8.
Florchinger
,
P.
,
1997
, “
Feedback Stabilization of Affine in the Control Stochastic Differential Systems by the Control Lyapunov Function Method
,”
SIAM J. Control Optim.
,
35
(
2
), pp.
500
511
.10.1137/S0363012995279961
9.
Chabour
,
R.
, and
Oumoun
,
M.
,
1999
, “
On a Universal Formula for the Stabilization of Control Stochastic Nonlinear Systems
,”
Stochastic Anal. Appl.
,
17
(
3
), pp.
359
368
.10.1080/07362999908809606
10.
Rajpurohit
,
T.
, and
Haddad
,
W. M.
,
2017
, “
Stochastic Finite-Time Partial Stability, Partial-State Stabilization, and Finite-Time Optimal Feedback Control
,”
Math. Control, Signals, Syst.
,
29
(
2
), pp.
1
39
. 10.1007/s00498-017-0194-9
11.
Rajpurohit
,
T.
, and
Haddad
,
W. M.
,
2017
, “
Nonlinear–Nonquadratic Optimal and Inverse Optimal Control for Stochastic Dynamical Systems
,”
Int. J. Robust Nonlinear Control
,
27
(
18
), pp.
4723
4751
.10.1002/rnc.3829
12.
Haddad
,
W. M.
, and
Jin
,
X.
, “
Implications of Dissipativity, Inverse Optimal Control, and Stability Margins for Nonlinear Stochastic Feedback Regulators
,”
Int. J. Robust Nonlinear Control
, (to be published).
13.
Arnold
,
L.
,
1974
,
Stochastic Differential Equations: Theory and Applications
,
Wiley-Interscience
,
New York
.
14.
Øksendal
,
B.
,
1995
,
Stochastic Differential Equations: An Introduction With Applications
,
Springer-Verlag
,
Berlin, Germany
.
15.
Khasminskii
,
R. Z.
,
2012
,
Stochastic Stability of Differential Equations
,
Springer-Verlag
,
Berlin, Germany
.
16.
Kushner
,
H. J.
,
1967
,
Stochastic Stability and Control
,
Academic Press
,
New York
.
17.
Meyn
,
S. P.
, and
Tweedie
,
R. L.
,
1993
,
Markov Chains and Stochastic Stability
,
Springer-Verlag
,
London, UK
.
18.
Folland
,
G. B.
,
1999
,
Real Analysis: Modern Techniques and Their Applications
,
Wiley
,
New York
.
19.
Mao
,
X.
,
1999
, “
Stochastic Versions of the LaSalle Theorem
,”
J. Differential Equations
,
153
(
1
), pp.
175
195
.10.1006/jdeq.1998.3552
20.
Bhat
,
S. P.
, and
Bernstein
,
D. S.
,
2000
, “
Finite-Time Stability of Continuous Autonomous Systems
,”
SIAM J. Control Optim.
,
38
(
3
), pp.
751
766
.10.1137/S0363012997321358
21.
Haddad
,
W. M.
, and
Chellaboina
,
V.
,
2008
,
Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach
,
Princeton University Press
,
Princeton, NJ
.
22.
Arapostathis
,
A.
,
Borkar
,
V. S.
, and
Ghosh
,
M. K.
,
2012
,
Ergodic Control of Diffusion Processes
,
Cambridge University Press
,
Cambridge, UK
.
23.
Hasminskii
,
R.
,
1980
,
Stochastic Stability of Differential Equations
,
Sijthoff and Noordhoff
,
Alphen aan den Rijn, The Netherlands
.
24.
Culick
,
F. E. C.
,
1976
, “
Nonlinear Behavior of Acoustic Waves in Combustion Chambers I
,”
Acta Astronaut.
,
3
(
9–10
), pp.
715
734
.10.1016/0094-5765(76)90107-7
25.
Awad
,
E.
, and
Culick
,
F. E. C.
,
1986
, “
On the Existence and Stability of Limit Cycles for Longitudinal Acoustic Modes in a Combustion Chamber
,”
Combust. Sci. Technol.
,
46
(3–6), pp.
195
222
.
26.
Awad
,
E.
, and
Culick
,
F. E. C.
,
1989
, “
The Two-Mode Approximation to Nonlinear Acoustics in Combustion Chambers—I: Exact Solution for Second Order Acoustics
,”
Combust. Sci. Technol.
,
65
(1–3), pp.
39
65
.10.1080/00102208908924041
27.
Jahnke
,
C. C.
, and
Culick
,
F. E. C.
,
1994
, “
Application of Dynamical Systems Theory to Nonlinear Combustion Instabilities
,”
J. Propul. Power
,
10
(
4
), pp.
508
517
.10.2514/3.23801
28.
Rajpurohit
,
T.
, and
Haddad
,
W. M.
,
2017
, “
Dissipativity Theory for Nonlinear Stochastic Dynamical Systems
,”
IEEE Trans. Autom. Control
,
62
(
4
), pp.
1684
1699
.10.1109/TAC.2016.2598474
You do not currently have access to this content.