Abstract

This paper revisits the problem of global asymptotic positioning of uncertain motion systems subject to actuator constraint and friction. A simple model-free saturated control is proposed by incorporating a relay term driven by position error into proportional-derivative (PD) methodology. Lyapunov's direct method is employed to prove global asymptotic positioning stability. The appealing advantages of the proposed approach are that it is conceived within the framework of saturated PD (SPD) control methodology with intuitive structure and absence of modeling parameter and embeds the whole control action within a single saturation function. Benefitted from these advantages, the proposed approach omits the complicated discrimination of the terms that shall be bounded in several saturation functions of the commonly used design and permits easy implementation with an improved performance. An additive feature is that the proposed control has the ability to ensure that the actuator constraint is not breached and assures global asymptotic positioning stability in the presence of unknown friction. Numerical simulations and experimental validations demonstrate the effectiveness and improved performance of the proposed approach. The proposed approach provides a model-free solution for fast transient and high-precision steady-state positioning of uncertain motion systems subject to unknown friction and actuator constraint.

References

1.
Sun
,
M. W.
,
Gao
,
Z.
,
Wang
,
Z. H.
,
Zhang
,
Y.
, and
Chen
,
Z. Q.
,
2017
, “
On the Model-Free Compensation of Coulomb Friction in the Absence of the Velocity Measurement
,”
ASME J. Dyn. Sys., Meas., Control
,
139
(
12
), p.
125001
.10.1115/1.4037267
2.
Bucci
,
B. A.
,
Cole
,
D. G.
,
Ludwick
,
S. J.
, and
Vipperman
,
J. S.
,
2013
, “
Nonlinear Control Algorithm for Improving Settling Time in Systems With Friction
,”
EEE Trans Control Syst. Technol.
,
21
(
4
), pp.
1365
1374
.10.1109/TCST.2012.2206812
3.
Angue-Mintsa
,
H.
,
Venugopal
,
R.
,
Kenne
,
J. P.
, and
Belleau
,
C.
,
2011
, “
Adaptive Position Control of an Electrohydraulic Servo System With Load Disturbance Rejection and Friction Compensation
,”
ASME J. Dyn. Syst. Meas. Control
,
133
(
6
), p.
064506
.10.1115/1.4004776
4.
Hu
,
T.
, and
Lin
,
Z.
,
2001
,
Control Systems With Actuator Saturation: Analysis and Design
,
Birkhauser
,
Boston, MA
.
5.
Kong
,
K.
,
Kniep
,
H. C.
, and
Tomizuka
,
M.
,
2010
, “
Output Saturation in Electric Motor Systems: Identification and Controller Design
,”
ASME J. Dyn. Sys., Meas., Control.
,
132
(
5
), p.
051002
.10.1115/1.4001792
6.
Perez-Arancibia
,
N. O.
,
Tsao
,
T.-C.
, and
Gibson
,
J. S.
,
2010
, “
Saturation-Induced Instability and Its Avoidance in Adaptive Control of Hard Disk Drives
,”
IEEE Trans. Control Syst. Technol.
,
18
(
2
), pp.
368
382
.10.1109/TCST.2009.2018298
7.
Workman
,
M.
,
1987
, “
Adaptive Proximate Time-Optimal Control Servomechanisms
,” Ph.D. dissertation,
Stanford University
,
San Francisco, CA
.
8.
Dhanda
,
A.
, and
Franklin
,
G. F.
,
2009
, “
An Improved 2-DOF Proximate Time Optimal Servomechanism
,”
IEEE Trans. Magn.
,
45
(
5
), pp.
2151
2164
.10.1109/TMAG.2009.2013247
9.
Salton
,
A. T.
,
Chen
,
Z.
, and
Fu
,
M.
,
2012
, “
Improved Control Design Methods for Proximate Time-Optimal Servomechanisms
,”
IEEE/ASME Trans. Mechatron.
,
17
(
6
), pp.
1049
1058
.10.1109/TMECH.2011.2158110
10.
Chen
,
B. M.
,
Lee
,
T. H.
,
Peng
,
K.
, and
Venkataramanan
,
V.
,
2003
, “
Composite Nonlinear Feedback Control for Linear Systems With Input Saturation: Theory and an Application
,”
IEEE Trans. Autom. Control
,
48
(
3
), pp.
427
439
.10.1109/TAC.2003.809148
11.
Wu
,
W.
, and
Jayasuriya
,
S.
,
2001
, “
A New QFT Design Methodology for Feedback Systems Under Input Saturation
,”
ASME J. Dyn. Syst., Meas., Control
,
123
(
2
), pp.
225
232
.10.1115/1.1367337
12.
Wu
,
W.
, and
Jayasuriya
,
S.
,
2009
, “
An Internal Model Control Anti-Windup Scheme With Improved Performance for Input Saturation Via Loop Shaping
,”
ASME J. Dyn. Syst., Meas., Control
,
132
(
1
), p.
014504
.10.1115/1.4000664
13.
Kanamori
,
M.
, and
Tomizuka
,
M.
,
2007
, “
Dynamic Anti-Integrator-Windup Controller Design for Linear Systems With Actuator Saturation
,”
ASME J. Dyn. Syst. Meas. Control
,
129
(
1
), pp.
1
12
.10.1115/1.2397146
14.
Kabamba
,
P.
,
Meerkov
,
S.
, and
Ossareh
,
H. R.
,
2013
, “
Quasi-Linear Control Approach to Designing Step Tracking Controllers for Systems With Saturating Actuators
,”
ASME J. Dyn. Syst. Meas. Control
,
135
(
5
), p.
054504
.10.1115/1.4024562
15.
Zheng
,
C. H.
,
Su
,
Y. X.
, and
Mercorelli
,
P.
,
2019
, “
A Simple Nonlinear PD Control for Faster and High-Precision Positioning of Servomechanisms With Actuator Saturation
,”
Mech. Syst. Signal Process.
,
121
, pp.
215
226
.10.1016/j.ymssp.2018.11.017
16.
Armstrong-Hélouvry
,
B.
,
Dupont
,
P.
, and
De Wit
,
C. C.
,
1994
, “
A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines With Friction
,”
Automatica
,
30
(
7
), pp.
1083
1138
.10.1016/0005-1098(94)90209-7
17.
Armstrong
,
B.
, and
Amin
,
B.
,
1996
, “
PID Control in the Presence of Static Friction: A Comparison of Algebraic and Describing Function Analysis
,”
Automatica
,
32
(
5
), pp.
679
692
.10.1016/0005-1098(95)00199-9
18.
Mallon
,
N.
,
van de Wouw
,
N.
,
Putra
,
D.
, and
Nijmeijer
,
H.
,
2006
, “
Friction Compensation in a Controlled One-Link Robot Using a Reduced-Order Observer
,”
IEEE Trans. Control Syst. Technol.
,
14
(
2
), pp.
374
383
.10.1109/TCST.2005.863674
19.
Makkar
,
C.
,
Hu
,
G.
,
Sawyer
,
W. G.
, and
Dixon
,
D. E.
,
2007
, “
Lyapunov-Based Tracking Control in the Presence of Uncertain Nonlinear Parameterizable Friction
,”
IEEE Trans. Autom. Control
,
52
(
10
), pp.
1988
1994
.10.1109/TAC.2007.904254
20.
Peng
,
K.
,
Chen
,
B. M.
,
Cheng
,
G.
, and
Lee
,
T. H.
,
2005
, “
Modeling and Compensation of Nonlinearities and Friction in a Micro Hard Disk Drive Servo System With Nonlinear Feedback Control
,”
IEEE Trans. Control Syst. Technol.
,
13
(
5
), pp.
708
721
.10.1109/TCST.2005.854321
21.
Cheng
,
G.
, and
Peng
,
K.
,
2007
, “
Robust Composite Nonlinear Feedback Control With Application to a Servo Positioning System
,”
IEEE Trans. Ind. Electron.
,
54
(
2
), pp.
1132
1140
.10.1109/TIE.2007.893052
22.
Cheng
,
G.
, and
Hu
,
J. G.
,
2014
, “
Robust Proximate Time-Optimal Servomechanism With Speed Constraint for Rapid Motion Control
,”
Rob. Comput. Integr. Manuf.
,
30
(
4
), pp.
379
388
.10.1016/j.rcim.2013.12.002
23.
Hong
,
Y.
, and
Yao
,
B.
,
2007
, “
A Globally Stable Saturated Desired Compensation Adaptive Robust Control for Linear Motor Systems With Comparative Experiments
,”
Automatica
,
43
(
10
), pp.
1840
1848
.10.1016/j.automatica.2007.03.021
24.
Zheng
,
C. H.
,
Su
,
Y. X.
, and
Mercorelli
,
P.
,
2019
, “
Faster Positioning of One Degree-of-Freedom Mechanical Systems With Friction and Actuator Saturation
,”
ASME J. Dyn. Sys., Meas., Control
,
141
(
6
), p.
064504
.10.1115/1.4042883
25.
Zheng
,
C. H.
,
Su
,
Y. X.
, and
Mercorelli
,
P.
,
2019
, “
Simple Saturated Relay Non-Linear PD Control for Uncertain Motion Systems With Friction and Actuator Constraint
,”
IET Control Theory Appl.
,
13
(
12
), pp.
1920
1928
.10.1049/iet-cta.2018.6441
26.
Zavala-Rio
,
A.
, and
Santibanez
,
V.
,
2007
, “
A Natural Saturating Extension of the PD-With-Desired-Gravity-Compensation Control Law for Robot Manipulators With Bounded Inputs
,”
IEEE Trans. Robot.
,
23
(
2
), pp.
386
391
.10.1109/TRO.2007.892224
27.
Su
,
Y. X.
,
Zheng
,
C. H.
, and
Mercorelli
,
P.
,
2017
, “
Global Finite-Time Stabilization of Planar Linear Systems With Actuator Saturation
,”
IEEE Trans. Circuits Syst. II-Express Briefs
,
64
(
8
), pp.
947
951
.10.1109/TCSII.2016.2626199
28.
Zheng
,
C. H.
,
Su
,
Y. X.
, and
Mercorelli
,
P.
,
2018
, “
Simple Relay Non-Linear PD Control for Faster and High-Precision Motion Systems With Friction
,”
IET Control Theory Appl.
,
12
(
17
), pp.
2302
2308
.10.1049/iet-cta.2018.5715
29.
Astrom
,
K. J.
, and
Hagglund
,
T.
,
1995
,
PID Controllers: Theory, Design and Tuning
,
Instrument Society of America
,
Research Triangle Park, NC
.
30.
Apostol
,
T. M.
,
1967
,
Calculus, Vol. 1: One-Variable Calculus, With an Introduction to Linear Algebra
, 2nd ed.,
Wiley
,
Hoboken, NJ
.
31.
Slotine
,
J.-J. E.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice Hall
,
Englewood Cliffs, NJ
.
32.
dSPACE
,
2008
, “DS1103 PPC Controller Board,”
dSPACE
,
Paderborn, Germany
.
You do not currently have access to this content.